Prognostic value of the "estimated albumin excretion rate" to predict renal events in chronic kidney disease

Irene E. Entwistle1, Lucie Bauer2, John W. Pickering2, Kathrin Untersteller1, Sarah Seiler1, Danilo Fliser1, Gunnar H. Heine1
1Department of Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
2Department of Medicine, University of Otago, Christchurch, New Zealand

Background / Hypothesis

-Albuminuria predicts progression of chronic kidney disease (CKD), cardiovascular morbidity and mortality.
-2013 Kidney Disease: Improving global outcomes (KDIGO) guidelines recommend estimating albuminuria from spot urine samples by using the urine albumin-creatinine ratio (ACR).
-Creatinine excretion substantially varies inter-individually, as it strongly associates with muscle mass and metabolism.
-ACR particularly underestimates albuminuria in young and male individuals.
-Several equations were recently introduced which estimate individual creatinine excretion rate (CER) based on individual’s sex, ethnicity and age, and multiplying CER with ACR yields an estimated albumin excretion rate (eAER).
-In cross-sectional analyses, 24 h albuminuria stronger associates with eAER than with ACR.

Hypothesis: In longitudinal studies eAER better predicts CKD progression than ACR.

Methods

-444 CKD patients (stage G2 – G4) were recruited from 2008 – 2012.
-Urine albumin and creatinine were measured from morning spot urine, and ACR and eAERCKD were calculated.
-For both ACR and eAER, each patient was classified into an albuminuria category, defined by KDIGO as A1 (< 30 mg/g), A2 (30 – 300 mg/g), A3 (> 300 mg/g).
-The renal endpoint was pre-defined as need for renal replacement therapy (RRT) or halving of eGFR within three years after recruitment.

Results

-By January 2015, 357 participants had information on three years outcome.
-The use of eAER reclassified 22 participants in a more advanced albuminuria category, 3 in a less advanced albuminuria category, 332 remained in the same albuminuria category.
-33 participants reached the predefined renal endpoint.

![Image](image1.png)

Table 1: Baseline characteristics of the total cohort and of patients stratified by subsequent renal events.

<table>
<thead>
<tr>
<th></th>
<th>total cohort (n=357)</th>
<th>no event (n=324)</th>
<th>event (n=33)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age [years]</td>
<td>65.2 ± 12.4</td>
<td>65.2 ± 12.5</td>
<td>65.2 ± 11.1</td>
<td>0.99</td>
</tr>
<tr>
<td>gender (female)</td>
<td>141 (39.4 %)</td>
<td>128 (42.4 %)</td>
<td>13 (39.4 %)</td>
<td>0.673</td>
</tr>
<tr>
<td>diabetes (yes)</td>
<td>140 (39.1 %)</td>
<td>111 (36.8 %)</td>
<td>29 (87.9 %)</td>
<td>0.038</td>
</tr>
<tr>
<td>systolic BP [mmHg]</td>
<td>154 ± 24</td>
<td>153 ± 24</td>
<td>161 ± 28</td>
<td>0.155</td>
</tr>
<tr>
<td>diastolic BP [mmHg]</td>
<td>87 ± 13</td>
<td>87 ± 13</td>
<td>86 ± 14</td>
<td>0.614</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>30 ± 5</td>
<td>30 ± 5</td>
<td>30 ± 5</td>
<td>0.354</td>
</tr>
<tr>
<td>total cholesterol [mg/dl]</td>
<td>194 ± 43</td>
<td>194 ± 42</td>
<td>190 ± 51</td>
<td>0.667</td>
</tr>
<tr>
<td>LDL-cholesterol [mg/dl]</td>
<td>117 ± 36</td>
<td>117 ± 35</td>
<td>117 ± 38</td>
<td>0.971</td>
</tr>
<tr>
<td>albuminuria [mg/mg]</td>
<td>37 [8, 202]</td>
<td>29 [7, 137]</td>
<td>370 [99, 1958]</td>
<td>0.003</td>
</tr>
<tr>
<td>eAER [mg/d]</td>
<td>41 [10, 263]</td>
<td>37 [9, 188]</td>
<td>472 [156, 2698]</td>
<td>0.003</td>
</tr>
<tr>
<td>eGFR [ml/min/1.73 m²; CKD-EPI (2012)]</td>
<td>45 ± 18</td>
<td>46 ± 17</td>
<td>24 ± 10</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Table 2: Reclassification from urine albumin-creatinine ratio (ACR) to estimated albumin-creatinine ratio based albuminuria categories. NRI ACR = 0 %; NRI eAER = -5.9 %.

![Image](image2.png)

Figure 1: Bland-Altman-Diagram: in many female participants, eAER yields lower estimates of albuminuria than ACR; in all male participants, eAER yields higher estimates of albuminuria than ACR.

Conclusions

-Substituting eAER for ACR re-classifies one out of 16 CKD patients to a more advanced KDIGO albuminuria category.
-Up-classification to more advanced albuminuria affects both patients who subsequently suffer renal events, as well as patients who do not suffer renal events.
-Data on cardiovascular outcome are presented separately (L. Bauer, FP 251).

Take HOME message / Glossary

-The use of eAER for stratifying CKD patients into albuminuria categories fails to improve renal outcome prediction; however, it improves cardiovascular outcome prediction (L. Bauer, FP 251).

-ACR: urine albumin (mg/L) / urine creatinine (mg/L)
-eAER/mg/d: ACR (mg/mg) * eAERCKD (mg/dL)
-eCERCKD (mg/dL): 1413.9 + (23.2 x age) – (0.3 x age²) in black males
-1148.6 + (15.6 x age) – (0.3 x age²) in black females
-1307.3 + (23.1 x age) – (0.3 x age²) in nonblack males
-1051.3 + (5.3 x age) – (0.1 x age²) in nonblack females