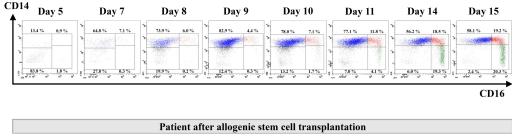
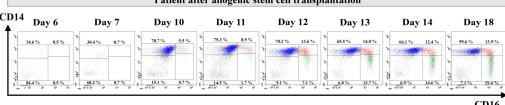

Characterization of human monocyte subsets in transplantation

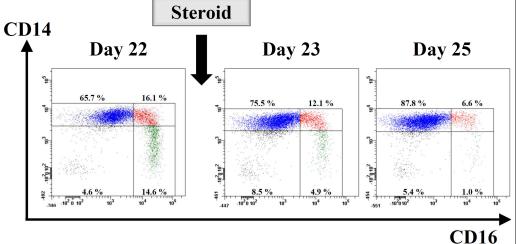
Zawada AM¹, Rogacev KS¹, Hundsdorfer J¹, Achenbach M², Held G², Fliser D¹, Heine GH¹

¹Department of Internal Medicine IV; ²Department of Internal Medicine I Saarland University Medical Center

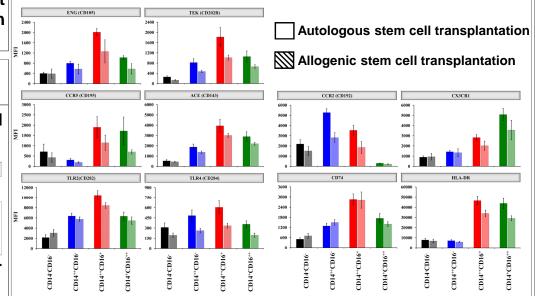

Saarland University Medical Center


Introduction

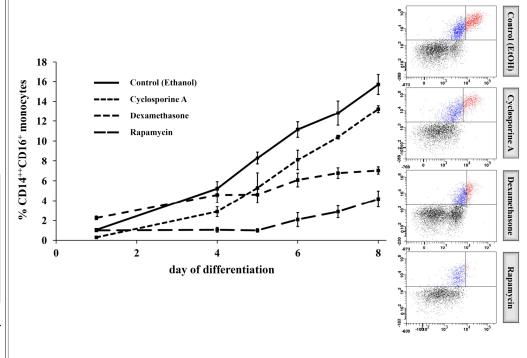
Monocytes are critical in innate immunity and transplantation. Three monocyte subsets exist, CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes; cell counts of CD14++CD16+ and CD14+CD16++ monocytes are increased in pre-transplant CKD. Interestingly, the effect of immunosuppressants on monocyte heterogeneity has not been well studied.


Results

1. Differentiation of monocytes in patients after autologous and allogenic stem cell transplantation



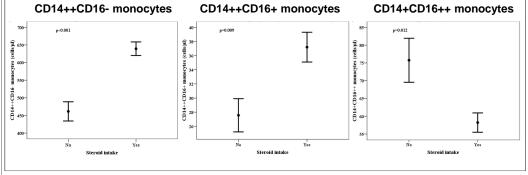
2. Impact of immunosuppressants on human monocyte subsets *in vivo*



Results

3. Expression of surface markers on differentiating monocytes in patients after autologous and allogenic stem cell transplantation

4. Impact of immunosuppressants on *in vitro* differentiation of human monocyte subsets



Results

5. Monocyte subsets in patients after kidney transplantation

Baseline characteristics

	Total cohort (n = 154)	Steroid (N) (n = 44)	Steroid (Y) (n = 110)	P-Value
Age (years)	56.1 ± 12.1	56.4 ± 12.1	56.0 ± 12.2	0.870
Sex (male)	98 (64%)	25 (57%)	73 (66%)	0.273
Diabetes mellitus (Y)	47 (31%)	13 (30%)	34 (31%)	1.000
Smoking (Y)	16 (10%)	2 (4%)	14 (13%)	0.156
Time since Tx (years)	5.7 [2.3-9.4]	6.7 [5.3-8.6]	4.7 [1.8-9.7]	0.018
BMI (kg/m²)	27.4±5.8	29.1±4.8	26.7±6.0	0.018
BP systolic (mmHg)	146±21	146±21	146±21	0.991
BP diastolic (mmHg)	85±10	84±9	86±11	0.385
GFR (ml/min/1.73m ²)	46.7±17.1	48.5±14.0	46.0±18.2	0.362
CRP (mg/l)	2.4 [1.1-5.9]	2.6 [1.3-6.6]	2.3 [0.9-5.9]	0.892
Total cholesterol (mg/dl)	198±38	187±36	202±38	0.024
LDL-C (mg/dl)	113±32	109±31	115±32	0.291
HDL-C (mg/dl)	58±18	52±17	60±18	0.012
Triglycerides (mg/dl)	141 [98-199]	135 [97-199]	144 [108-198]	0.561

Conclusions

Monocytes are critical in innate immunity and vascular disease. Three monocyte subsets exist: CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes. Most standard immunosuppressants do not influence monocyte subsets; however, chronic low dose steroids are associated with shifts in monocyte subset distribution towards proinflammatory CD14++CD16+ monocytes.