

S-Adenosylhomocysteine - a novel non-

traditional cardiovascular risk factor in CKD

Insa E. Emrich¹; Adam M. Zawada¹; Sarah Seiler-Mußler¹; Rima Obeid²; Jürgen Geisel²; Danilo Fliser¹; Gunnar H. Heine¹

¹Internal Medicine IV - Nephrology and Hypertension; Saarland University Medical Center, Homburg

²Clinical Chemistry and Laboratory Medicine / Central Laboratory; Saarland University Medical Center, Homburg

Saarland University Medical Center

Background / Hypotheses

- Homocysteine has been discussed as a cardiovascular risk factor in patients with chronic kidney disease (CKD).
- ➤ However, randomized trials in which homocysteine was lowered *via* vitamin B supplementation failed to demonstrate a survival benefit.
- The homocysteine metabolite S-Adenosylhomocysteine (SAH; Figure 1) is a potent inhibitor of methylation reactions and thus a central epigenetic regulator.
- > Vitamin B supplementation, which lowers homocysteine, does not reduce SAH.
- Against this background, we aimed to investigate the prognostic value of SAH in chronic kidney disease.

Figure 1: C1 metabolism (schematic overview; Zawada et al. NDT 2013)

Methods / Results

- ➤ Plasma homocysteine (fluorescence polarization immunoassay) and SAH (tandem mass spectrometer) concentrations were assessed among 297 CARE FOR HOMe participants who suffered from CKD (KDIGO G 1- G 5; Table 1).
- Participants with more advanced GFR categories had higher plasma homocysteine and SAH concentrations (Figure 2 & 3).
- \triangleright eGFR correlated more strongly with plasma SAH (r = 0.497) than with plasma homocysteine (r = 0.424).
- ➤ Participants with prevalent cardiovascular disease had higher plasma SAH than patients without prevalent cardiovascular disease (p = 0.007; Figure 4 & 5).
- ➤ In logistic regression analyses, however SAH did not independently predict prevalent CVD (Table 2).
- During a follow-up period of 2.5 ± 0.7 years, 33 participants experienced the predefined cardiovascular endpoint (Kaplan Meier analysis, Figure 6).

	means ± SD		n (%)
Age (years)	67.0 ± 12.5	Gender (women)	117 (39.4 %)
BMI (kg/m²)	30.6 ± 5.6	Active smoking (yes)	32 (10.8 %)
systolic blood pressure (mmHg)	146 ± 21	Prevalent CVD (yes)	61 (20.5 %)
eGFR (MDRD) (ml/min/1.73 m ²)	44 ± 19	Diabetes mellitus (yes)	106 (35.7 %)

Table 1: Baseline characteristics of CARE FOR HOMe participants.

Results

Figure 2 & 3: Plasma SAH and plasma homocysteine in CKD patients stratified for GFR categories. Data are shown as means, 25th / 75th percentile, range, outliers and extreme values. Statistical analysis: one-way ANOVA with p for trend.

Figure 4 & 5: Plasma SAH and plasma homocysteine in patients without and with prevalent cardiovascular disease (t-test for two independent samples).

	Exp (B)	95% confidence interval	p-value
SAH [nmol/l]	1.003	[0.989; 1.017]	0.658
Age [years]	1.060	[1.029; 1.092]	< 0.001
Active smoking [yes]	0.919	[0.353; 2.393]	0.862
Systolic BP [mmHg]	1.009	[0.996; 1.022]	0.189
LDL-C [mg/dl]	0.995	[0.987; 1.003]	0.238
Gender [female]	0.565	[0.320; 0.999]	0.050
Diabetes mellitus [yes]	1.036	[0.582; 1.844]	0.905
eGFR-MDRD [ml/min/1.73 m ²]	1.001	[0.977; 1.026]	0.938

<u>Table 2:</u> Logistic regression analyses: independent variables: SAH, age, gender, eGFR and cardiovascular risk factors; dependent variable: prevalent cardiovascular disease. BP: blood pressure; LDL-C = low density lipoprotein-cholesterol.

Figure 6: After stratification of participants in quartiles, those individuals with the highest plasma SAH levels had a significant higher event rate (log rank test p = 0.004).

Discussion

In CKD, plasma SAH predicts cardiovascular events. Further studies are needed to identify strategies to lower plasma SAH, after B vitamins failed to reduce plasma SAH levels.