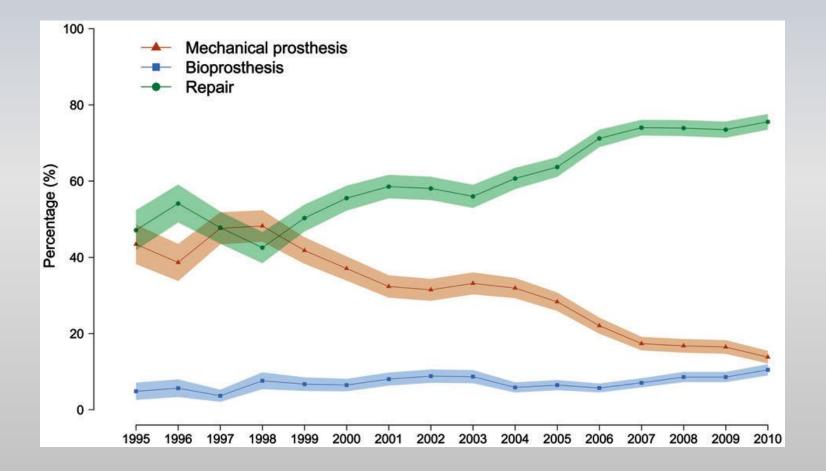
Why and When to Repair the Aortic Valve?

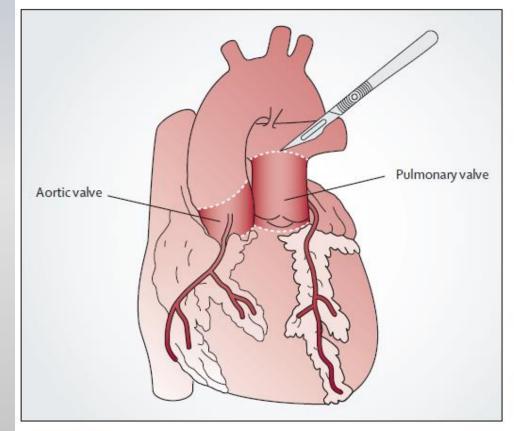
Ehud Raanani, MD

Cardiothoracic Surgery, Sheba Medical Center "Sackler" School of Medicine, Tel Aviv University

Homburg, September, 2017



The Leviev Heart Center



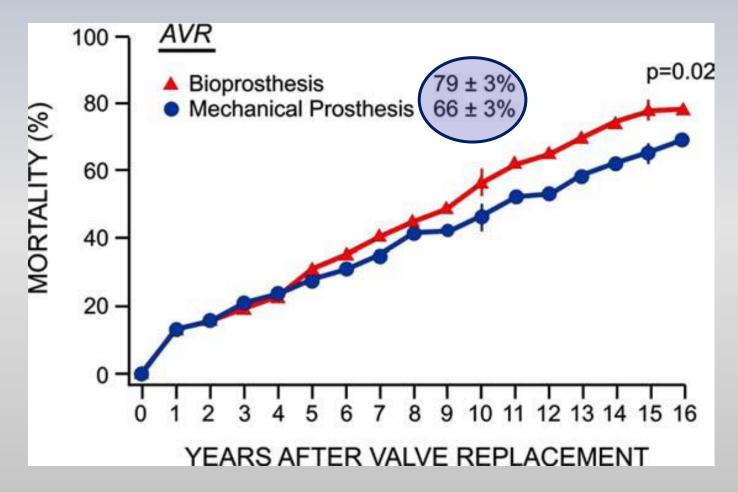
Comment

Under-use of the Ross operation—a lost opportunity

*Maqdi H Yacoub, Ismail El-Hamamsy, Hans-Hinrich Sievers, Blase A Carabello, Robert O Bonow, Paul Stelzer, Francisco D A da Costa, Hans J Schäfers, Peter Skillington, Efstratios I Charitos, Giovanni Battista Luciani, Johanna J M Takkenberg Magdi Yacoub Institute, Imperial College, London UB9 6JH, UK (MHY); Montreal Heart Institute, Montreal, Canada (IE-H); University Hospital Lübeck, Lübeck, Germany (H-HS, EIC); Northwestern University Feinberg School of Medicine, Chicago, IL, USA (ROB); Mount Sinai Hospital, New York, NY, USA (BAC, PSt); Department of Cardiovascular Surgery, Santa Casa de Curitiba, Brazil (FDAdC); Saarland University Medical Center, Homburg, Germany (HJS); The Royal Melbourne Hospital, Melbourne, Australia (PSk); University of Verona, Verona, Italy (GBL); and Department of Cardio-Thoracic Surgery, Erasmus MC, Rotterdam, Netherlands (JJMT) m.yacoub@imperial.ac.uk We declare no competing interests.

Figure: The Ross procedure

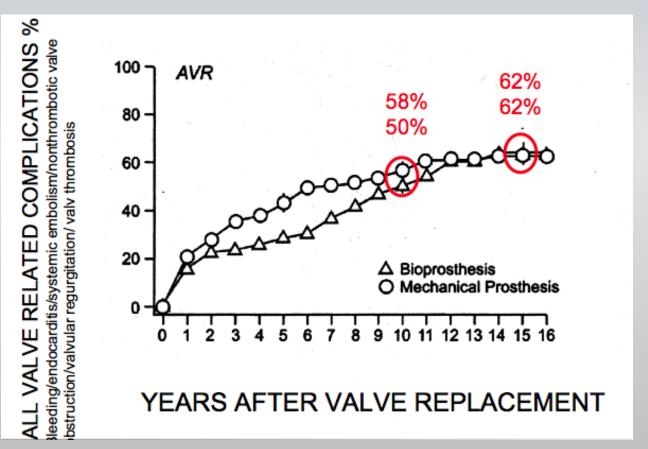
The patient's own pulmonary valve is used to replace the diseased aortic valve and a pulmonary homograft is inserted in the right ventricular outflow.


CONVENTIONAL AVR

SEVERAL ADVANTAGES

- Reproductible
- Short operative times
- Prosthesis durability can be anticipated
- Long-term data

Late Mortality



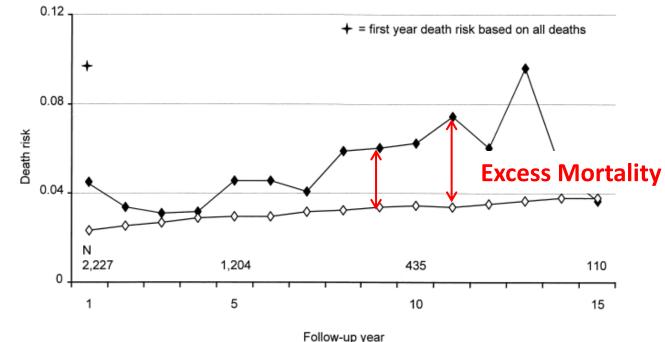
J Am Coll Cardiol. 2000 Oct;36(4):1152-8

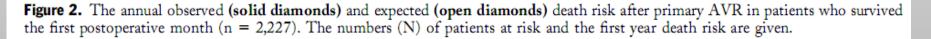
Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the

Veterans Affairs randomized trial

High Late Morbidity!

YOUNG ADULTS


- High level of physical activity
- Quality of life
- Prolonged anticipated life expectancy
 - = Exposure to valve-related complications
 - Degeneration + Reoperation (tissue valves)
 - Bleeding + Thromboembolisms (mechanical valves)


AVR SURVIVAL

Observed and Relative Survival After Aortic Valve Replacement

Per Kvidal, MD,* Prof. Reinhold Bergström, PHD,‡ Lars-Gunnar Hörte, PM, BA,§ Elisabeth Ståhle, MD, PHD†

Uppsala and Stockholm, Sweden

Kvidal et al. JACC 2000

AVR IN THE YOUNG

Table 4. Basic Data Concerning Observed and Expected Deaths Based on Data From Follow-Up Years 1 through 15*

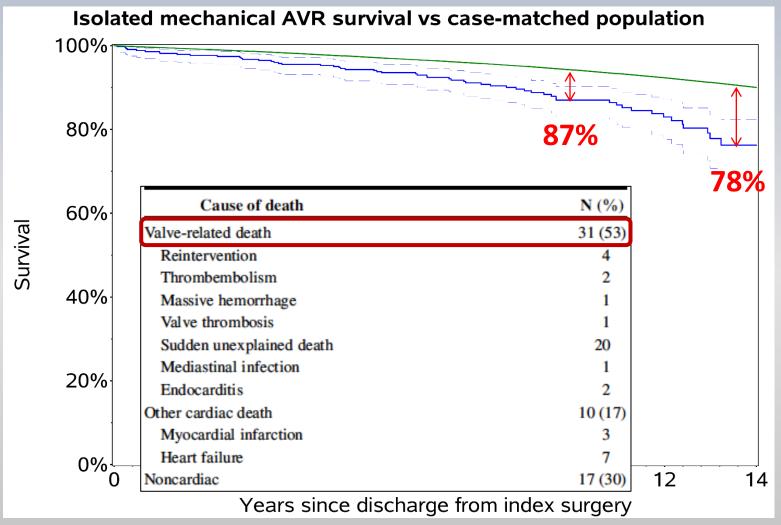
	Patient- Years at Risk	Observed Number of Deaths	Expected Number of Deaths	O/E Deaths
Age (yrs)				
Age (yrs) ≤ 50	2,182	31	6.8	4.5
51-60	2,954.5	98	36.9	2.7
61-70	5,578.5	274	152.1	1.8
≥71	5,578.5 3,579	212	208.2	1.0

The younger the patients are, The higher excess mortality is

MECHANICAL AVR IN THE YOUNG

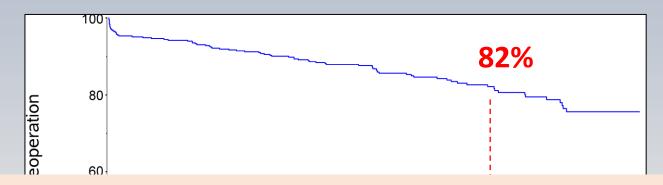
Long-term outcomes after elective isolated mechanical aortic valve replacement in young adults

Ismail Bouhout, MSc,^a Louis-Mathieu Stevens, MD, PhD,^b Amine Mazine, MSc,^a Nancy Poirier, MD,^a Raymond Cartier, MD,^a Philippe Demers, MD,^a and Ismail El-Hamamsy, MD, PhD^a

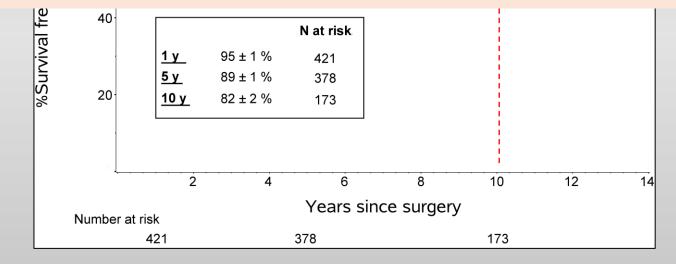

1997-2006: 469 isolated mechanical AVR <65 years

Mean follow-up: 9.1 ± 3.5 years

Follow-up 95% complete (4099 patient-years)


Mean age: 53.2 ± 9.2

SURVIVAL – MECHANICAL AVR



Bouhout et al. JTCVS 2014

SURVIVAL FREE FROM REOPERATION

A 10 years, 1 in 5 patients is dead or reoperated

Bouhout et al. JTCVS 2014

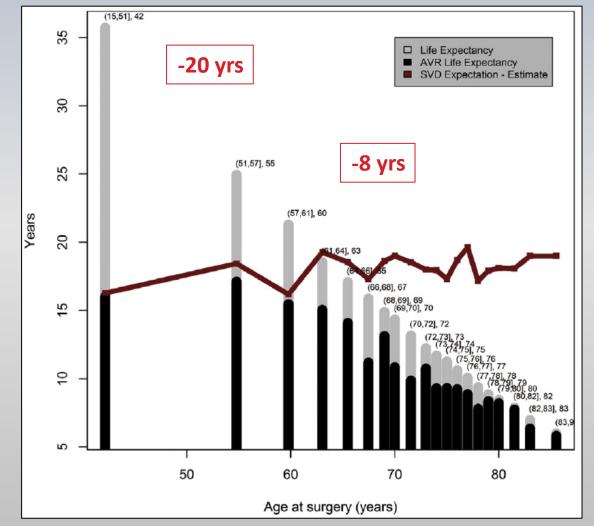
TISSUE AVR IN THE YOUNG

Survival after valve replacement for aortic stenosis: Implications for decision making

Tomislav Mihaljevic, MD,^a Edward R. Nowicki, MD,^a Jeevanantham Rajeswaran, MSc,^b Eugene H. Blackstone, MD,^{a,b} Luigi Lagazzi, MD,^a James Thomas, MD,^c Bruce W. Lytle, MD,^a and Delos M. Cosgrove, MD^a

3,049 Perimount patients; 1991-2004

"...younger patients had worse than expected survival that was further diminished with insertion of a small prosthesis."


TISSUE AVR IN THE YOUNG

Very Long-Term Outcomes of the Carpentier-Edwards Perimount Valve in Aortic Position

Thierry Bourguignon, MD, Anne-Lorraine Bouquiaux-Stablo, MD, Pascal Candolfi, PhD, Alain Mirza, MD, Claudia Loardi, MD, Marc-Antoine May, MD, Rym El-Khoury, MD, Michel Marchand, MD, and Michel Aupart, MD

2,659 Perimount patients; 1984-2008

Excess Mortality in Young Adults

Bourguignon et al. Ann Thorac Surg 2015

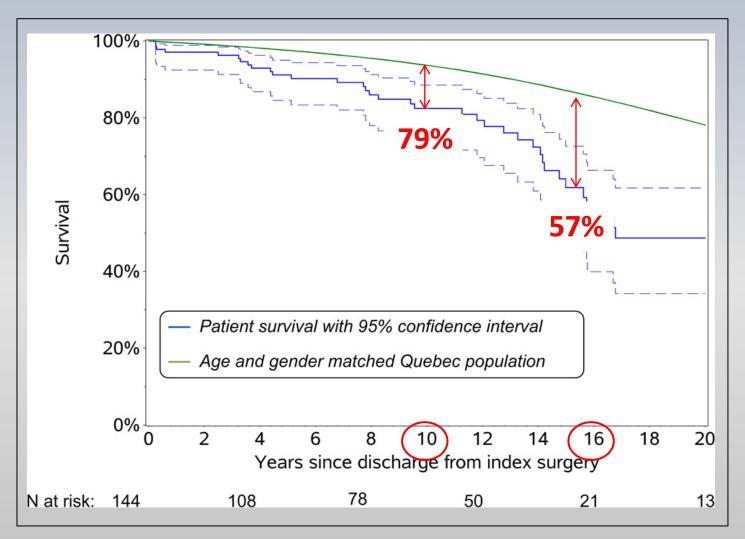
TISSUE AVR IN THE YOUNG

The Perimount Valve in the Aortic Position: Twenty-Year Experience With Patients Under 60 Years Old

Jessica Forcillo, MD, MS, Ismail El Hamamsy, MD, PhD, Louis-Mathieu Stevens, MD, PhD, David Badrudin, Michel Pellerin, MD, Louis P. Perrault, MD, PhD, Raymond Cartier, MD, Denis Bouchard, MD, MS, Michel Carrier, MD, MBA, and Philippe Demers, MD, MS

Department of Cardiac Surgery, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada

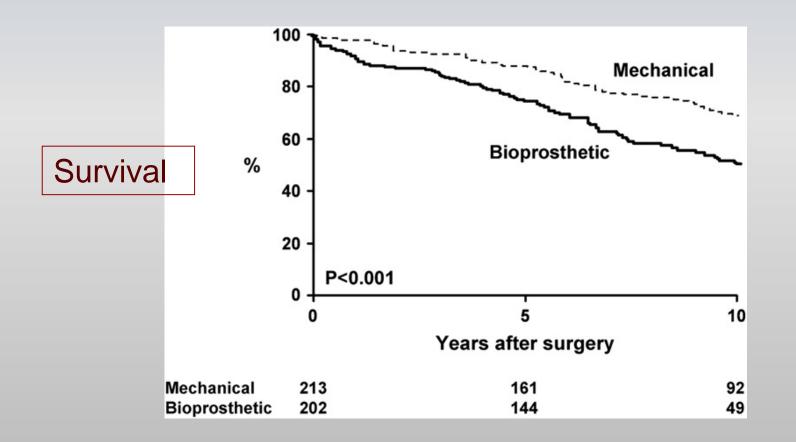
1981-2011: 144 isolated bioprosthetic AVRs


Exclusion: Concomitant procedures, reoperations, urgent operations

Mean age: 51 ± 9 years

Mean follow-up: 10 years

Forcillo et al. ATS 2014


TISSUE AVR IN THE YOUNG

Forcillo et al. ATS 2014

Aortic valve replacement in patients aged 50 to 70 years: Improved outcome with mechanical versus biologic prostheses

Morgan L. Brown, MD,^a Hartzell V. Schaff, MD,^a Brian D. Lahr, MS,^b Charles J. Mullany, MD,^a Thoralf M. Sundt, MD,^a Joseph A. Dearani, MD,^a Christopher G. McGregor, MD,^a and Thomas A. Orszulak, MD^a

J Thorac Cardiovasc Surg 2008;135:878-84

Risk-corrected impact of mechanical versus bioprosthetic valves on long-term mortality after aortic valve replacement

Ole Lund, MD, PhD, and Martin Bland, MSc, PhD

Meta-Analysis: Survival not affected by type of prosthesis

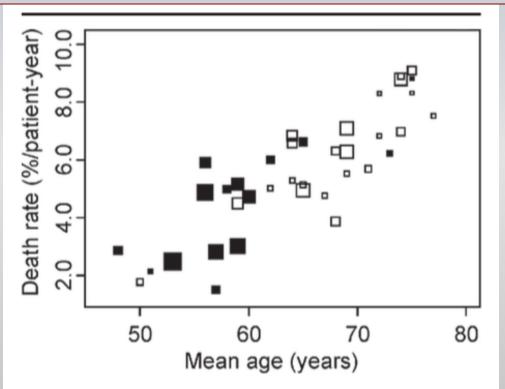
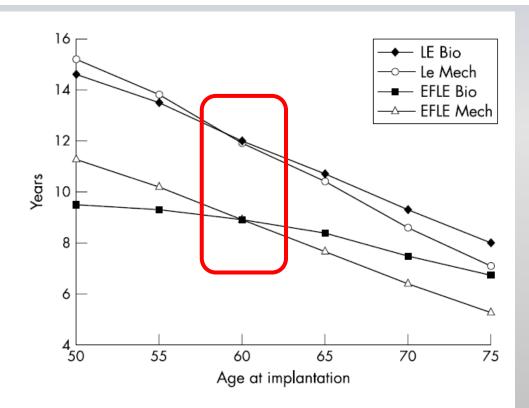
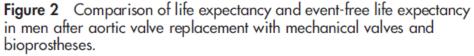
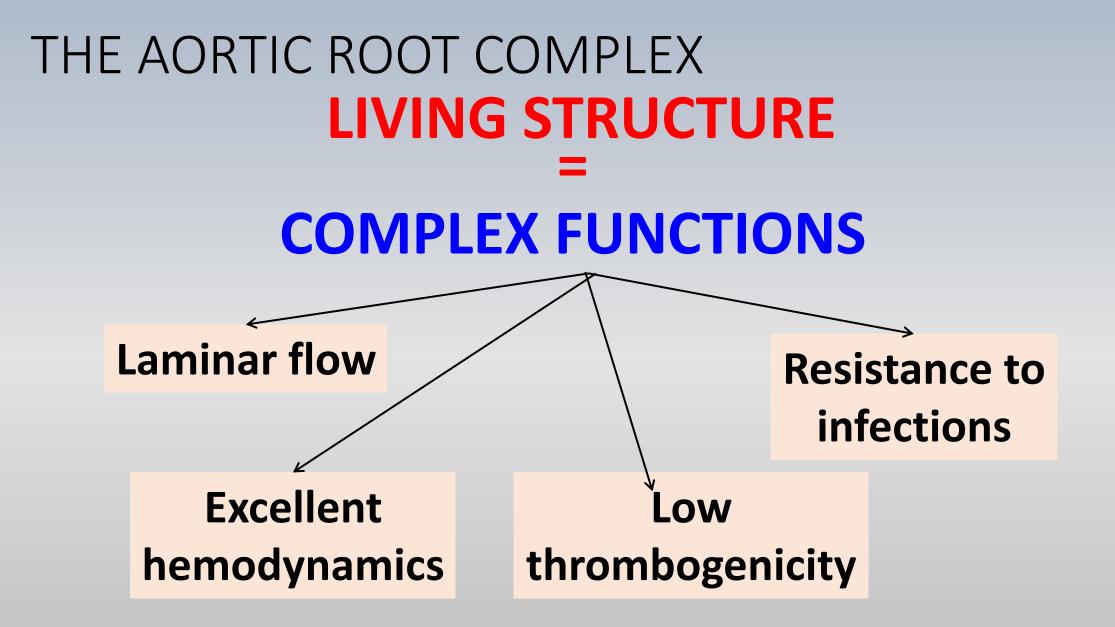
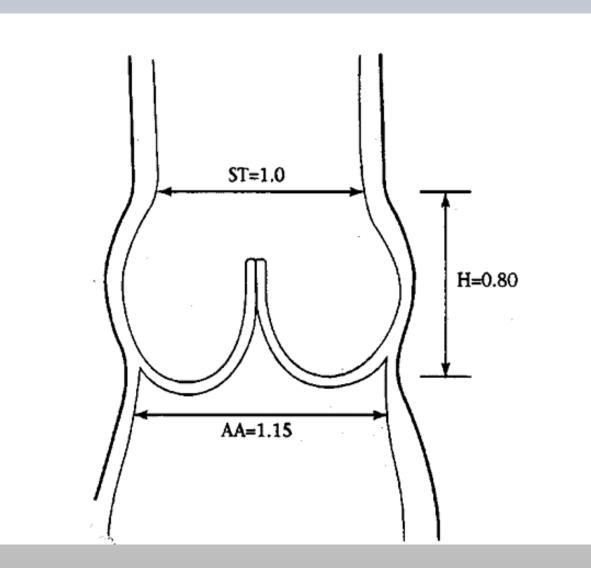




Figure 2. Total death rate of the 15 mechanical (\blacksquare) and 23 bioprosthetic (\Box) valve series in relation to mean age of each series. Areas of the squares are proportional to the total follow-up (patient-y) in each valve series.

Comparison of outcomes after aortic valve replacement with a mechanical valve or a bioprosthesis using microsimulation J P A Puvimanasinghe, J J M Takkenberg, M B Edwards, M J C Eijkemans, E W Steyerberg, L A van Herwerden, K M Taylor, G L Grunkemeier, J D F Habbema, A J J C Bogers

Heart 2004;90:1172-1178. doi: 10.1136/hrt.2003.013102




Conventional AVR is associated with Excess Mortality

up to 60 years of age at the time of surgery, and significant VR morbidity Procedure is palliative and not curative

THE AORTIC ROOT IS A living structure with optimal geometry and biology

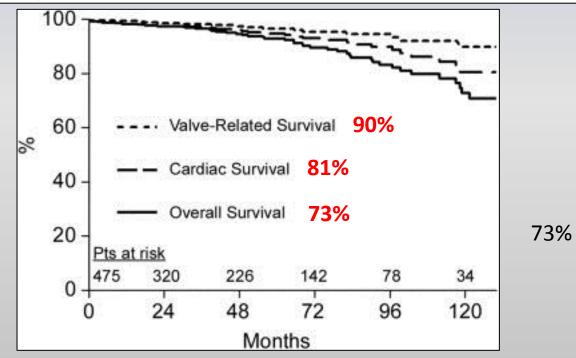
The importance of geometry

AORTIC VALVE REPAIR/PRESERVING SURGERY

- No randomized trials
- Single-center (single-surgeon) series
- Difficult to compare AI patients to AS patients

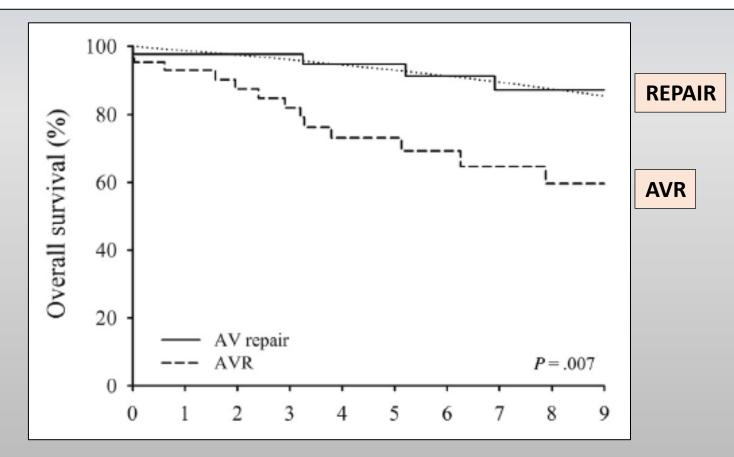
Risk of Valve-Related Events After Aortic Valve Repair

Joel Price, MD, MPH, Laurent De Kerchove, MD, David Glineur, MD, PhD, Jean-Louis Vanoverschelde, MD, PhD, Philippe Noirhomme, MD, and Gebrine El Khoury, MD


1995-2010: 475 elective AV repair (AI or aneurysm)

Mean age: 53 ± 16 years

Mean follow-up: 4.6 years


Risk of Valve-Related Events After Aortic Valve Repair

Joel Price, MD, MPH, Laurent De Kerchove, MD, David Glineur, MD, PhD, Jean-Louis Vanoverschelde, MD, PhD, Philippe Noirhomme, MD, and Gebrine El Khoury, MD

Valve repair improves the outcome of surgery for chronic severe aortic regurgitation: A propensity score analysis

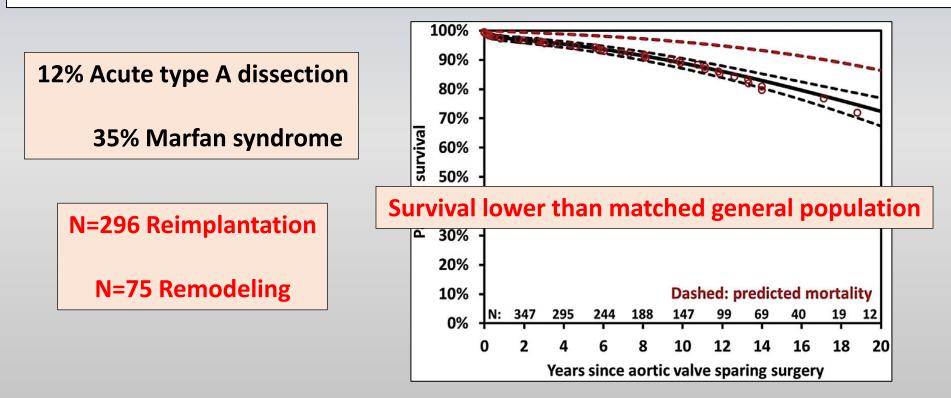
Christophe de Meester, MS,^{a,b} Agnès Pasquet, MD, PhD,^{a,b} Bernhard L. Gerber, MD, PhD,^{a,b} David Vancraeynest, MD, PhD,^{a,b} Philippe Noirhomme, MD,^{a,c} Gébrine El Khoury, MD,^{a,c} and Jean-Louis J. Vanoverschelde, MD, PhD^{a,b}

de Meester et al. JTCVS 2014

A quarter of a century of experience with aortic valve-sparing operations

Tirone E. David, MD, Christopher M. Feindel, MD, Carolyn M. David, BN, and Cedric Manlhiot, BSc

1988-2010: 371 consecutive valve-sparing procedures (~15/year)


Mean age: 47 ± 15 years

Median follow-up: 8.9 years

David et al. JTCVS 2014

A quarter of a century of experience with aortic valve-sparing operations

Tirone E. David, MD, Christopher M. Feindel, MD, Carolyn M. David, BN, and Cedric Manlhiot, BSc

Aortic valve repair leads to a low incidence of valve-related complications

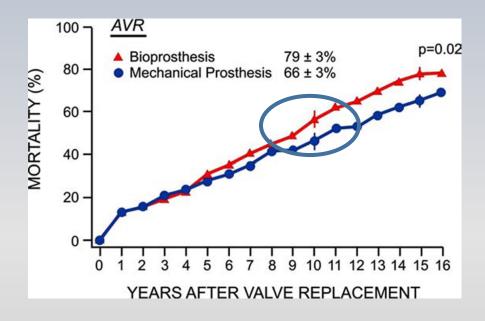
Diana Aicher^a, Roland Fries^b, Svetlana Rodionycheva^a, Kathrin Schmidt^a, Frank Langer^a, Hans-Joachim Schäfers^{a,*}

1995-2007: 640 consecutive valve-sparing procedures

81% of all patients with AI

Mean age: 56 ± 17 years

Mean follow-up: 4.8 years

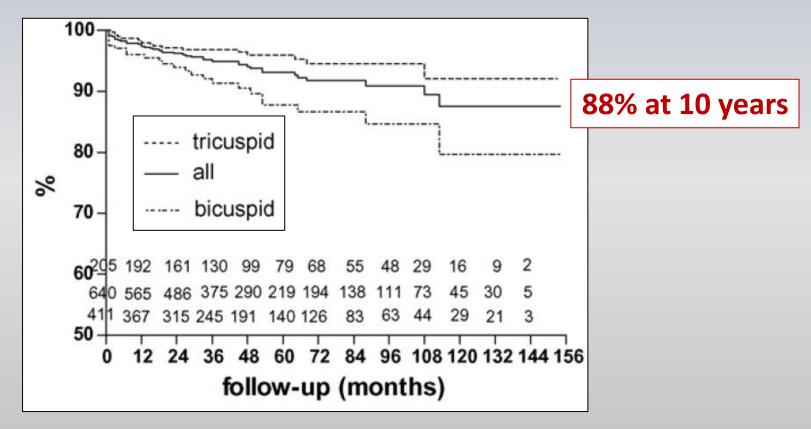

Aicher et al. EJCTS 2010

10% acute dissection

Survival for the whole patient cohort was 92% at 5 years and 80% at 10 years with significantly better survival in patients with a bicuspid rather than a tricuspid AV (p = 0.0004). Survival at 10 years was worse in patients with concomitant coronary artery bypass grafting (75% vs. 85%; p = 0.42).

SURVIVAL SUMMARY

- ~80% survival at 10 years despite:
 - Inclusion of acute type A dissections
 - Connective tissue disorders
- No studies into the second decade
 - Mean follow-up <10 years



• <u>Difficult to compare survival of AI pts to</u> <u>AS patients</u>

VALVE-RELATED COMPLICATIONS

FREEDOM FROM ALL VALVE-RELATED COMPLICATIONS

(Reoperation, endocarditis, thromboembolism and hemmorhage)

VALVE-RELATED COMPLICATIONS

A quarter of a century of experience with aortic valve-sparing operations

Tirone E. David, MD, Christopher M. Feindel, MD, Carolyn M. David, BN, and Cedric Manlhiot, BSc

	Follow-up point (y)					
Freedom from	1	5	10	15	18	
Mortality	97.3 ± 0.8	94.6 ± 1.2	89.0 ± 2.0	79.7 ± 3.4	76.8 ± 4.3	
Reoperation*	99.7 ± 0.3	99.7 ± 0.3	97.0 ± 1.3	94.8 ± 2.0	94.8 ± 2.0	
Aortic insufficiency	99.7 ± 0.3	99.6 ± 0.4	93.2 ± 2.0	90.7 ± 2.6	78.0 ± 4.8	
Mitral insufficiency [†]	100	99.2 ± 0.6	92.8 ± 2.1	88.8 ± 3.5	88.8 ± 3.5	
Thromboembolism§	99.5 ± 0.4	96.6 ± 1.0	94.1 ± 1.5	92.2 ± 2.4	90.1 ± 3.2	
Valve-related event	98.1 ± 0.6	95.5 ± 1.1	91.2 ± 2.4	85.5 ± 3.8	79.4 ± 4.6	

VALVE-RELATED COMPLICATIONS

Reported Outcome After Valve-Sparing Aortic Root Replacement for Aortic Root Aneurysm: A Systematic Review and Meta-Analysis

Bardia Arabkhani, MD, Aart Mookhoek, MD, Isabelle Di Centa, MD, Emmanuel Lansac, MD, PhD, Jos A. Bekkers, MD, PhD, Rob De Lind Van Wijngaarden, MD, PhD, Ad J. J. C. Bogers, MD, PhD, and Johanna J. M. Takkenberg, MD, PhD

Variable	Pooled Data	Range	Included Studies (n)
Total patient number	4.777	32-430	31
Surgical period	1988-2012		31
Mean age (years)	51.0	29-63	30
Gender, male (%)	71.0	57%-85	30
Comorbidity			
Connective tissue disease (%)	23.9	0–100	35
Severe aortic regurgitation (%)	46.1	6.4–100	25
Bicuspid aortic valve (%)	14.1	0-33	28
Prior cardiac operation (%)	4.49	2–12	14
Other indications			
Acute type A dissection (%)	10.5	0–33	28

Reported Outcome After Valve-Sparing Aortic Root Replacement for Aortic Root Aneurysm: A Systematic Review and Meta-Analysis

Bardia Arabkhani, MD, Aart Mookhoek, MD, Isabelle Di Centa, MD, Emmanuel Lansac, MD, PhD, Jos A. Bekkers, MD, PhD, Rob De Lind Van Wijngaarden, MD, PhD, Ad J. J. C. Bogers, MD, PhD, and Johanna J. M. Takkenberg, MD, PhD

Table 2. Linearized Occurrence Rates of Late Outcome Events								
Pooled Late Outcome Events	LOR + 95% CI	Heterogeneity (I ²)	Included Studies (n)	Events (n)	Patient Years (n)			
Late mortality	1.53 (1.19–1.96)	82.6	31	262	21,274			
Reoperation on aortic valve	1.32 (1.0-1.74)	72.3	31	228	21,274			
Hemorrhage	0.23 (0.13-0.42)	78.7	26	15	19,158			
Thromboembolism	0.41 (0.22-0.77)	27.6	26	42	19,158			
Endocarditis	0.23 (0.11-0.51)	0.00	30	29	20,930			
MAVRE	1.66 (1.24–2.23)	100	20	300	19,158			

Table 2. 1	Linearized	Occurrence	Rates of	Late	Outcome	Event
------------	------------	------------	----------	------	---------	-------

QUALITY OF LIFE

Quality of life after aortic valve surgery: Replacement versus reconstruction

Diana Aicher, MD,^a Annika Holz,^a Susanne Feldner, MD,^a Volker Köllner, MD,^b and Hans-Joachim Schäfers, MD^a

	TABLE I. Patient characteristics						
		No.	Sex (male/female)	Age at operation (y, mean ± SD)	Age at survey (y, mean ± SD)		
AV REPAIR	Group I	87	63:24	38 ± 6	40 ± 6		
MECHANICAL	Group II	40	35:5	40 ± 7	46 ± 7		
ROSS	Group III	39	27:12	40 ± 7	46 ± 7		

TADLE 1 Detions above stanistics

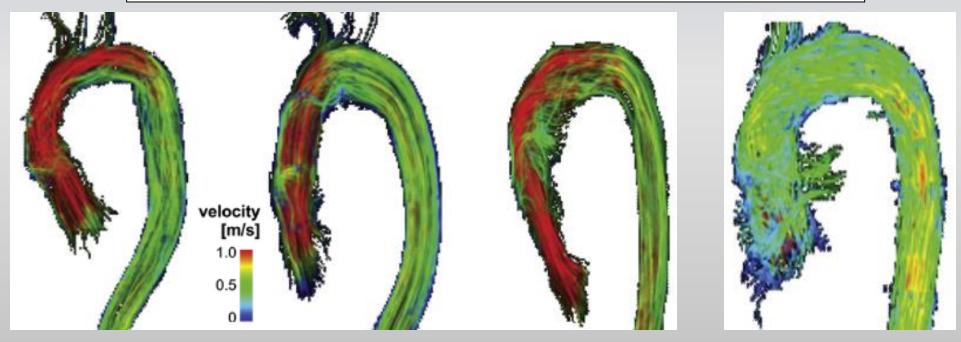
Aicher et al. JTCVS 2011

-								
Valve-specific	Group	Group	Group	Р				
questions	I	П	ш	value				
1. If I had to do it over again, would I make the same decision to have								
surgery?								
Yes	94.0%	89.7%	100.0%	.821				
I don't know	3.6%	7.7%	0.0%					
No	2.4%	2.6%	0.0%					
2. Is there a valve sound	that bothers	me?		\frown				
Never/rarely	91.5%	41.0%	92.4%	<.001				
Occasionally	6.1%	33.3%	5.1%	\smile				
Frequently/always	2.4%	25.7%	2.5%					
3. Following my valve su	rgery, the fr	equency of a	loctor visits	and blood				
tests bothers me.				\frown				
Never/rarely	75.9%	61.6%	84.2%	.011				
Occasionally	20.5%	17.9%	13.2%	\smile				
Frequently/always	3.6%	20.5%	2.6%					
4. The possibility of comp	lications du	e to my impla	inted valve c	oncerns me.				
Never/rarely	48.2%	48.7%	61.5%	.309				
Occasionally	43.4%	30.8%	33.3%					
Frequently/always	8.4%	20.5%	5.2%					
5. I am concerned about j	possible ble	eding caused	by my antic	coagulant				
medication.				\frown				
Never/rarely	80.5%	43.6%	79.5%	<.001				
Occasionally	12.2%	15.4%	7.7%					
Frequently/always	7.3%	41.0%	12.8%					
6. I am afraid that my val	ve may fail			\frown				
Never/rarely	53.7%	51.3%	76.9%	(.036)				
Occasionally	34.1%	28.2%	17.9%	\smile				
Frequently/always	12.2%	20.5%	5.2%					
7. I am afraid that I may	need anothe	r valve operation	ation.					
Never/rarely	38.0%	48.7%	53.8%	.382				
Occasionally	45.0%	25.6%	25.6%					
Frequently/always	17.0%	25.7%	20.6%					

Aicher et al. JTCVS 2011

Quality of life after aortic valve repair is similar to Ross patients and superior to mechanical valve replacement: a cross-sectional study

Pavel Zacek^{1*†}, T. Holubec^{2†}, M. Vobornik¹, J. Dominik¹, J. Takkenberg³, J. Harrer¹ and J. Vojacek¹


	Y (repair)	O (repair)	Ross	M (mechAVR)
	n = 36	n = 52	n = 22	n = 29
	(96)	(%)	(%)	(%)
I. If you had to do it over again, would	d you chose the same procedure?			
Yes	92	71	82	72
l don't know	6	21	18	21

Conclusions: Postoperative quality of life is influenced by the type of aortic valve procedure and is negatively linked with mechanical prosthesis implantation and long-term anticoagulation. Aortic valve-sparing strategy should be considered in cases with suitable valve morphology due to favorable clinical results and beneficial impact on the long-term quality of life.

HEMODYNAMICS

Comparison of Hemodynamics After Aortic Root Replacement Using Valve-Sparing or Bioprosthetic Valved Conduit

Jeremy D. Collins, MD, Edouard Semaan, MD, Alex Barker, PhD, Patrick M. McCarthy, MD, James C. Carr, MD, Michael Markl, PhD, and S. Chris Malaisrie, MD

Collins et al. ATS 2015

Comparison of Hemodynamics After Aortic Root Replacement Using Valve-Sparing or Bioprosthetic Valved Conduit

Background. The purpose of this study is to compare aortic hemodynamics and blood flow patterns using inthe state of the second, p ≤ 0.005). Flow asymmetry in BIO-ARR was increased compared with VSARR, evidenced by more Conclusions. The VSARR results in improved hemodynamic outcomes when compared with BIO-ARR, as indicated by reduced peak velocities in the aortic root and less helix flow in the AAo by 4D flow MRI. Longitudinal research assessing the clinical impact of these differences in hemodynamic outcomes is warranted.

the aortic root and AAo in both VSARR and BIO-ARR were elevated compared with controls (1.1 to 1.3m/

(Ann Thorac Surg 2015;100:1556–62) © 2015 by The Society of Thoracic Surgeons

SUMMARY WHY TO REPAIR

• Improved Survival (evidence is limited)

• Reduced Valve-related complications

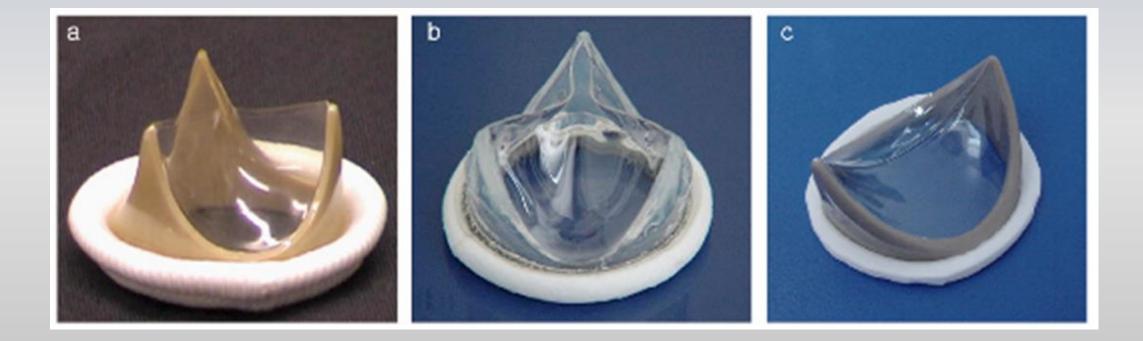
• Improved Quality of life

- New prosthesis
- New anticoagulant therapy
- Valve in valve impact
- Reduced Redo risk

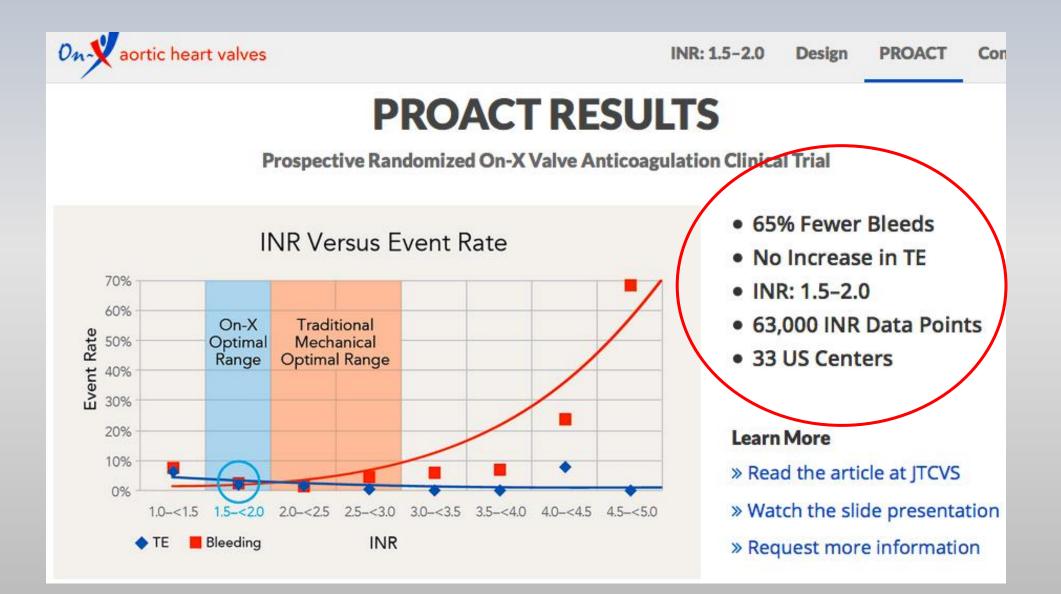
European Journal of Cardio-Thoracic Surgery Advance Access published November 1, 2013
European Journal of Cardio-Thoracic Surgery (2013) 1-2
doi:10.1093/ejcts/ezt513
EDITORIAL COMMENT

Initial experience with rivaroxaban in mechanical valve prosthesis in an animal model

José I. Aramendi** and Carlos A. Mestres*


* Division of Cardiac Surgery, Cruces University Hospital, Barakaldo, Spain

^b Department of Cardiovascular Surgery, Hospital Clinico, Barcelona, Spain


 Corresponding author. Division of Cardiac Surgery, Cruces University Hospital, Plaza de Cruces, Barakaldo, Spain. Tel: +34-946002374; fax: +34-946006079; e-mail. joseignacio.aramendigallardo@osakidetza.net (J.I. Aramendi).

Keywords: Factor Xa inhibitors • Heart valve • Thromboembolism • Valvular prosthesis

Newer Generation Prosthesis?

On-X valve

PROACT Trial (n=375 pts)

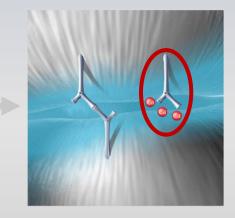
AVR High-risk postrandomization event comparisons

		group = 766.2)	Control group (pt-yr = 878.6)				
Primary Event	Patients (n)	Rate (%/pt-yr)	Patients (n)	Rate (%/pt-yr)	Rate Ratio (test/ctrl)	95% Cl	P-value
Bleeding							
Major	12	1.57	34	3.87	0.40	0.21-0.78	0.007
Hemorrhagic stroke	1	0.13	4	0.46	0.29	0.03-2.56	0.264
Minor	9	1.17	35	3.98	0.29	0.14-0.61	0.001
Total	21	2.74	69	7.85	0.35	0.21-0.57	<0.001
Ischemic stroke	6	0.78	7	0.80	0.98	0.33-2.92	0.975
TIA	11	1.44	7	0.80	1.80	0.70-4.65	0.223
Neurologic event	17	2.22	14	1.59	1.39	0.69-2.82	0.359
Peripheral TE	4	0.52	1	0.11	4.59	0.51-41.04	0.173
All TE	21	2.74	15	1.71	1.61	0.88-3.11	0.161
Thrombosis	2	0.26	2	0.23	1.15	0.16-8.14	0.891
Major event (major bleeding, all TE, thrombosis)	35	4.57	51	5.80	0.79	0.51-1.21	0.275
Primary endpoint	44	5.74	86	9.79	0.59	0.41-0.84	0.004

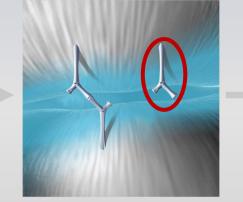
Puskas et al. JTCVS 2014

A new class of resilient bovine pericardial valves

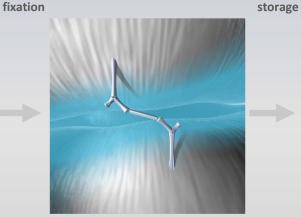
- builds on PERIMOUNT valve design
- RESILIA tissue preservation
- VFit Technology



Resilient Tissue Valves

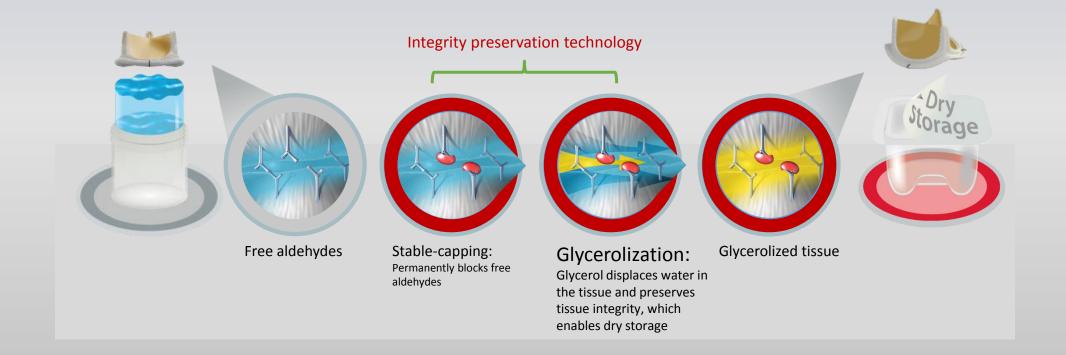


Multiple factors influence tissue calcification, some of which are inherent to the current technology (e.g. free aldehydes)¹


Glutaraldehyde

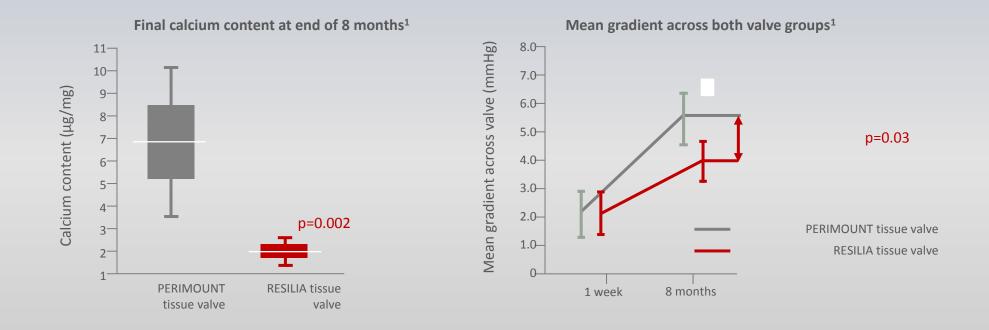
In vivo, calcium binds to free aldehydes

However, a side effect of glutaraldehyde fixation and storage is the introduction of free aldehydes



of free Within the collagen matrix, chains glutaraldehyde fixation strengthens the tissue by creating crosslinks

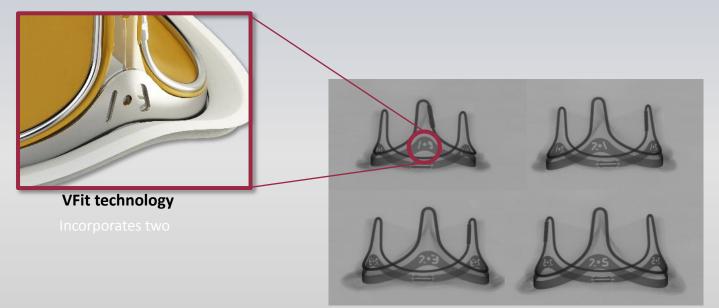
Glutaraldehyde


Collagen fibers consist of free amino acid side chains

Tissue exposure to free aldehydes during glutaraldehyde fixation and storage is a major cause of calcification. Integrity preservation technology incorporates <u>two features</u> with a new way to virtually <u>eliminate free aldehydes</u> while <u>preserving</u> <u>and protecting</u> the tissue

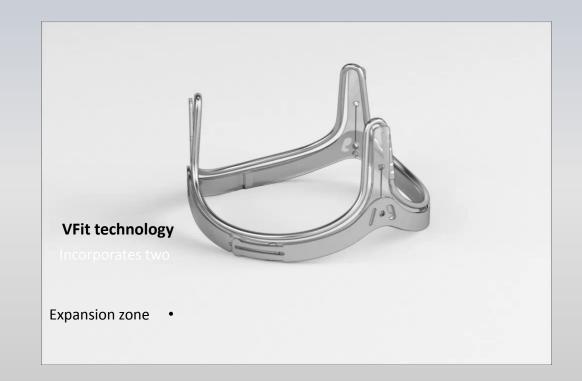
Juvenile sheep model: Significant improvement in anti-calcification and sustained hemodynamic properties compared with the PERIMOUNT valve

"This model mirrors the accelerated calcification that is often seen in younger humans."

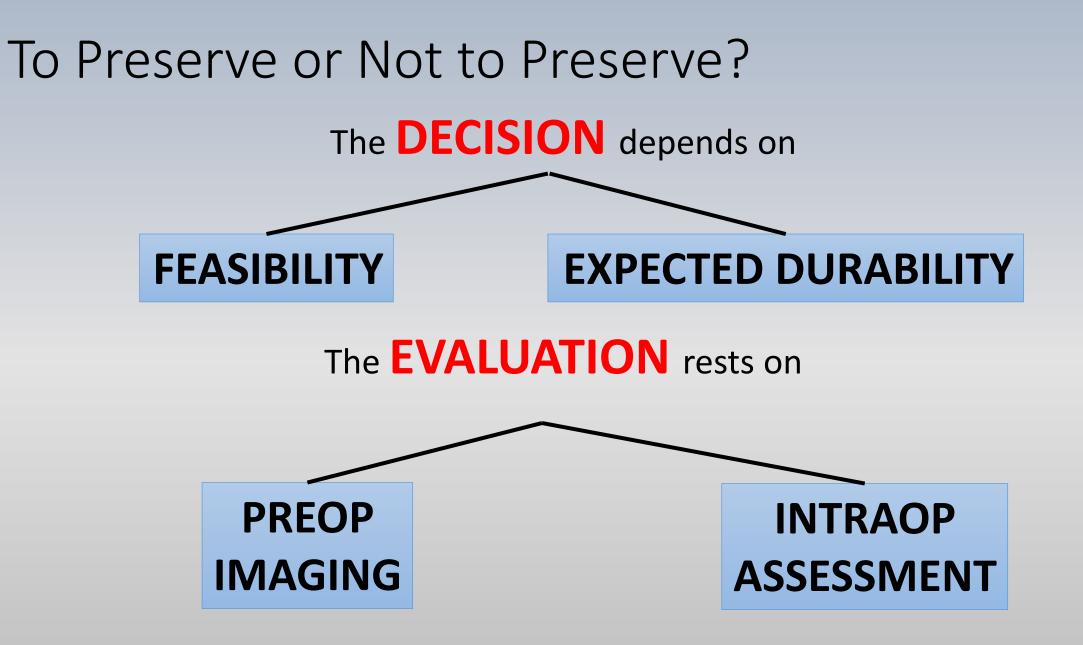

Calcium content was 72% lower, and mean gradient was significantly lower than in the control group*

* No clinical data are available that evaluate the long-term impact of RESILIA tissue in patients.

1. Flameng W, et al. J Thorac Cardiovasc Surg. 2015;149:340-5.


/

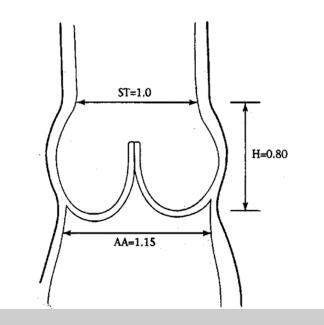
The technology incorporates two novel features designed for potential future valve-in-valve (ViV) procedures


• Fluoroscopically visible size markers

Technology incorporates two features designed for potential future valve-in-valve (ViV) procedures

AORTIC VALVE REPAIR

WHEN?



Mechanisms of AR are a combination of:

Root pathology: Asc. Aortic aneurysm (STJ) Root aneurysm: STJ Annular dilataion

Cusp pathology:

Cusp Prolapse Calcific degeneration Commissural pathologies

To recognize the anatomical and operative factors associated with better repair durability

Favorable ECHO Characteristics

• CUSPS

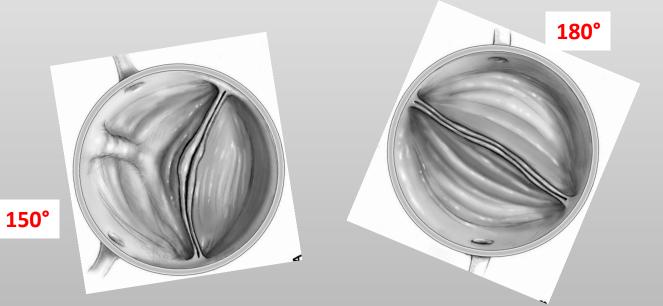
- Pliable
- Little to no calcium
- Sufficient tissue length (Gh)

AORTIC ANNULUS

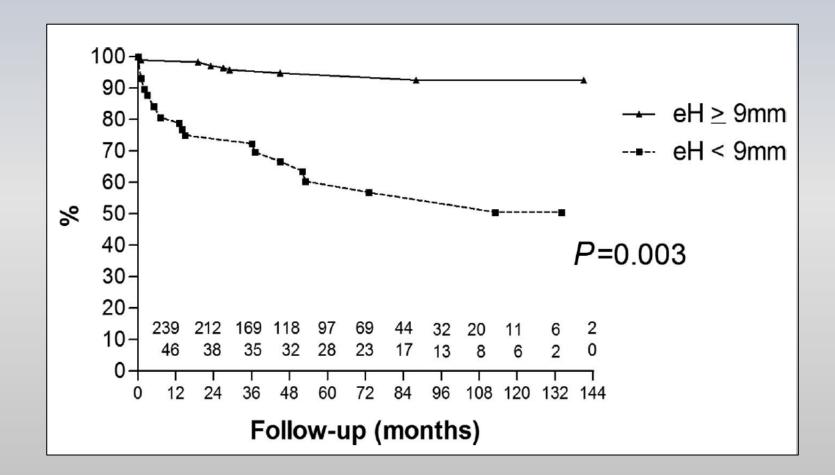
• <28mm

• COMMISSURES (BAV)

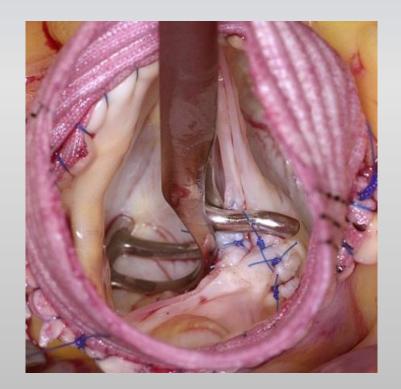
• Close to symmetric circumferential orientation 160-180°

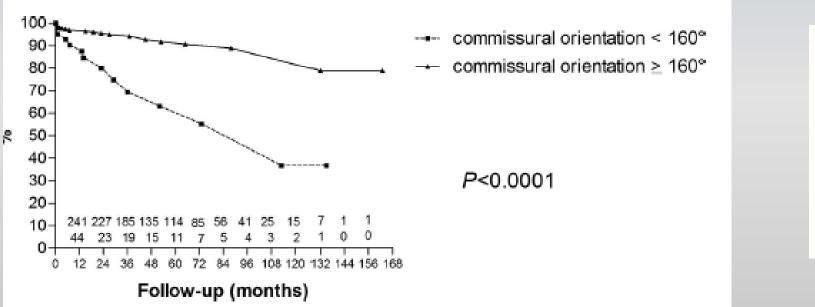

Favorable INTRAOP Characteristics

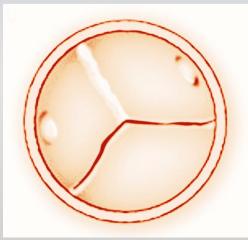
- CUSPS
 - Geometric height ≥20mm(BAV)>18 (TAV)
 - Little to no calcium/fenestrations

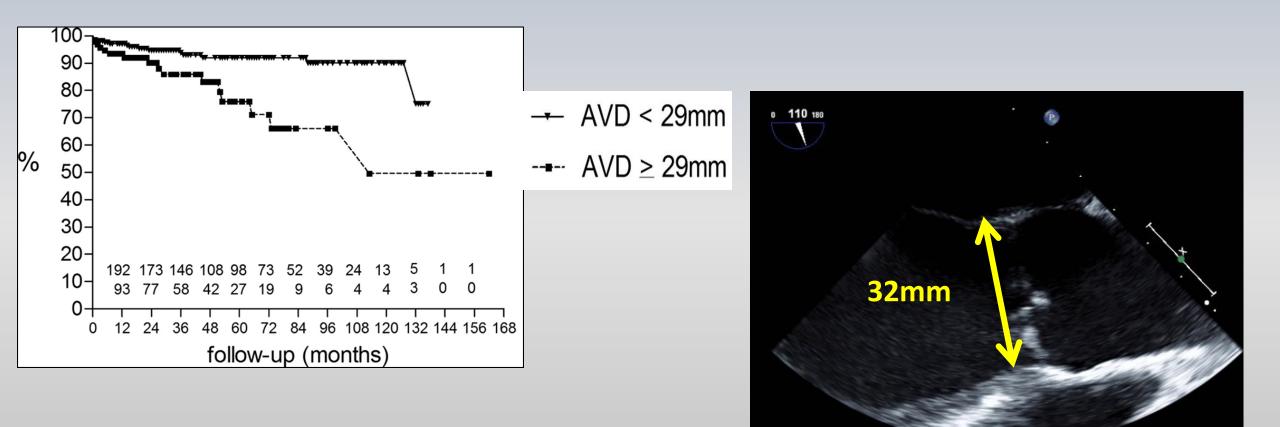

COMMISSURES

Circumferential orientation 160-180°

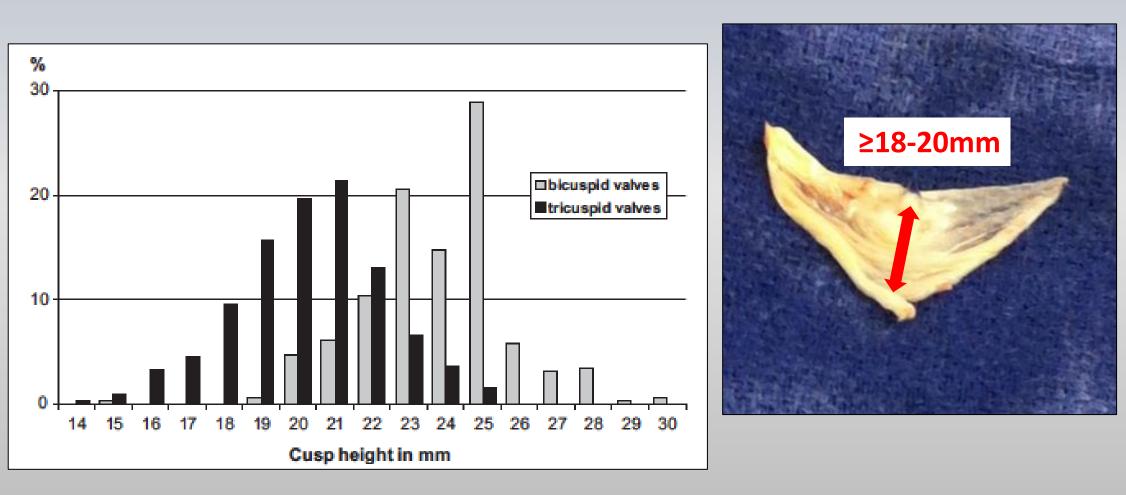

RELEVANCE OF CUSP PROLAPSE EFFECTIVE HEIGHT


Aicher et al. Circulation 2011

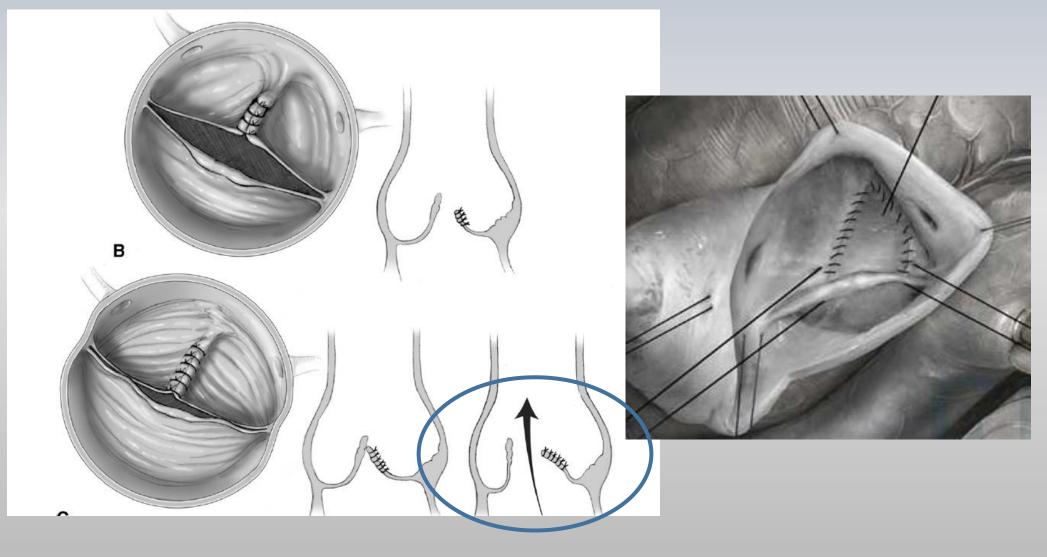

The Effective Height Concept


Freedom from reoperation BAV repair depending on the orientation of the 2 normal commissures

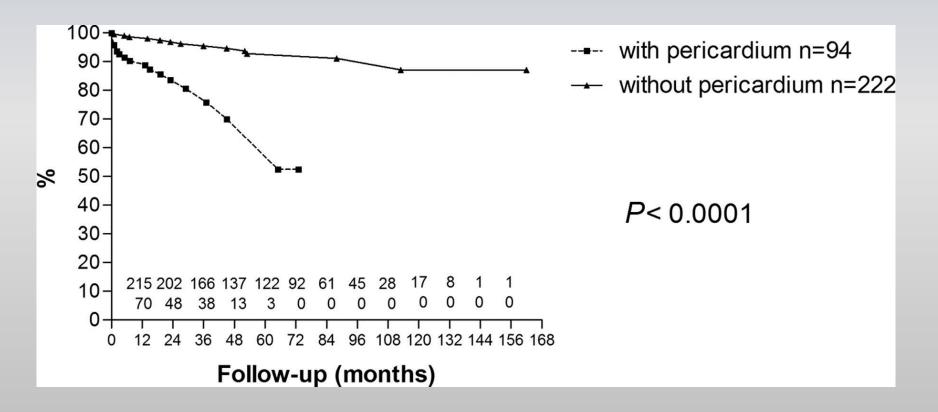
Aicher D et al. Circulation 2011;123:178-185


The importance to treat annular dilatation

Aicher et al. Circulation 2011

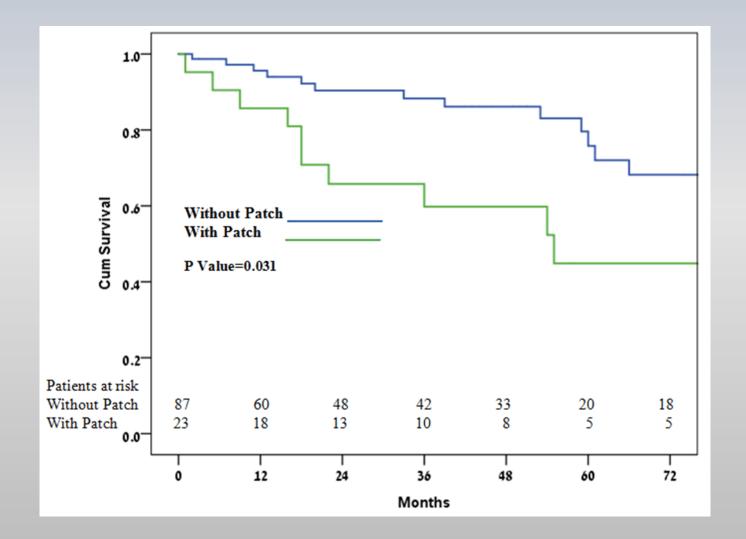

JPEG

Tissue deficiency GEOMETRIC HEIGHT



Schafers et al. JTCVS 2013

Tissue Deficiency (geometric height< 18-20mm)



Freedom from reoperation after BAV repair depending on the use of a pericardial patch

Aicher D et al. Circulation 2011;123:178-185

Pericardial Patch Augmentation Other materials(Cor-matrix, Gortex membrane, Cardiocell)

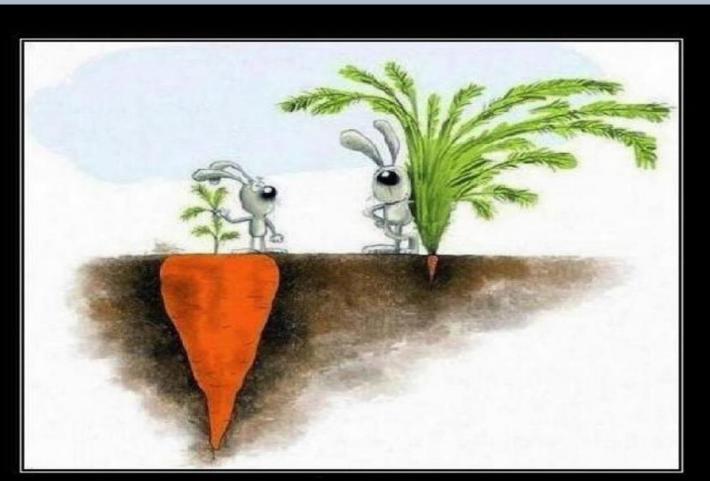
Presented at the EACTS 2016

The impact of experience

Aortic valve repair leads to a low incidence of valve-related complications Diana Aicher^a, Roland Fries^b, Svetlana Rodionycheva^a, Kathrin Schmidt^a, Frank Langer^a, Hans-Joachim Schäfers^{a,*} Freedom from $AR \ge II$ (b) 100 03-07 90 99-02 80-95-98 % **Improving Results with Experience and Understanding** log rank test p=0.025 50-84 96 108 120 132 24 36 48 12 60 72 Follow-up (months)

Aicher et al. EJCTS 2010

SUMMARY


AORTIC VALVE REPAIR

• WHY?

- Better survival
- Less valve-related complications
- Better quality of life

• WHEN?

- Echo and intraoperative determination
- Feasibility is not enough, <u>repair should be durable</u>-JUDGEMENT

SUCCESS

it's not always what you see

Common sense is not so common.

Voltaire

www.theg

Thank you!