Anatomy of the Aortic Valve & Root

Frank Langer

Reconstruction of the Aortic Valve and Root

Sept 13-15, 2017

I.		II.		III.		IV.	
I have received (a) research grant(s) / in kind support		I have been a speaker or participant in accredited CME/CPD		I have been a consultant/strategic advisor etc		I am a holder of (a) patent/shares/ stocks or ownership	
Α		Α		Α		Α	
from current sponsor(s)		from current sponsor(s)		for current sponsor(s)		<u>related</u> to presentation	
YES	NO	YES	NO	YES	NO	YES	NO
X	X	Χ	X	X	X	X	
В		В		В		В	
from any	institution	from any	[,] institution	for any in	nstitution	<u>not relat</u> presentatio	ed to on
YES	NO	YES	NO	YES	NO	YES	NO
X	X	X		X	X	X	
SCORE: 1234							

Aortic Valve/Root Anatomy

Location / Co-Location
Anatomic Components
Dimensions
Dysfunction
Congenital Variations

Aortic Root: Location

- Posterior / right relative to the subpulmonary infundibulum
- Wedged between the orifices of the two AV-valves

Anderson Heart 2000

Co-Location

Wilcox Cook Anderson Cambridge 3rd ed

Aortic Annulus

- Unites aortic cusps and sinuses
- Scalloped shape
- Fibrous throughout its course
- Strands extend into myocardium and the fibrous continuity with AML

Aortic Annulus = Ring ???

• **Crown**-shaped hemodynamic junction marked by semilunar attachments of the aortic cusps ?

Ring-like ventriculo-arterial junction

• **Ring**-like joining base line of semilunar attachments (virtual) basal ring Court

Courtesy of E. Lansac

Sinus Valsalvae

Non-coronary sinus fibrous (aorto-mitral continuity)

Crescents of LV musculature at base of left and right sinus (variably)

Anderson Heart 2000

Aortic Cusps

- Consist of collagen, elastin, glycosaminoglycans
- Attached to aortic annulus
- Semilunar shape base 1.5 x free margin
- Cusps meet at commissures immediately below sinotubular junction

AORTIC GEOMETRY

A cross section of the geometry in the region of the tortic valve is sketched in Figure 2. Dimensions are shown as fractions of base aortic diameter (approximately the annulus diameter at the base of the aortic valve). The coaptation ratio of 0.2 at the apex of the leaflets is of interest. The maximum coaptation ratio of 0.4 is about midway along the contact or the free edge of the leaflets. The leaflet length ratio is 0.75-0.8. The maximum diameter ratio of the sinus cavities is about 1.5. The area-averaged diameter ratio of the sinus region calculated from the measured maximum crosssectional area through the sinuses is 1.36. These measurements are the averages of measurements on silicone rubber casts of nine human valves (made by the authors) at pressures from 0 to 100 mm Hg corresponding to those during the pulse cycle.

No change in leaflet dimensions occurs following the time when left ventricular pressure reaches aortic pressure, since there is no longer any pressure gradient across the valve.

10 normal cryopreserved tricuspid homografts

Human aortic root measurements

Level	Orifice area (cm²)	Diameter (mm)*	Diameter (mm)†	Thickness (mm)	Interlevel distance (mm)
STJ ₁	3.40 ± 0.38	21.1 ± 1.0	20.6 ± 1.0	1.9 ± 0.2	10.0 ± 0.0 7.3 ± 0.4
STJ ₀	$2.98 \pm 0.32 \ddagger$	$18.9 \pm 0.9 \ddagger$	$19.3 \pm 0.9 \ddagger$	1.8 ± 0.2	
SINUS	4.49 ± 0.40 §	22.4 ± 1.7 §	23.7 ± 1.0 §	1.3 ± 0.1	
BASE	4.24 ± 0.44	23.4 ± 1.2	23.0 ± 1.1	0.8 ± 0.1	62.4 ± 0.4

Valves given as mean plus or minus standard error of the mean.

Kunzelman, Grande, David et. al JTCVS 1994

Human aortic leaflet dimensions

	Right	Left	Noncoronary	Average	
Height (cm)	1.33 ± 0.06	1.39 ± 0.08	1.37 ± 0.04	1.36 ± 0.06	1
Free margin length (cm)	3.30 ± 0.14	$3.15 \pm 0.14^*$	3.27 ± 0.13	3.24 ± 0.13	
Attached edge length (cm)	4.64 ± 0.20	4.76 ± 0.22	4.81 ± 0.16	4.74 ± 0.19	
Perimeter (cm)	7.94 ± 0.33	7.91 ± 0.35	8.08 ± 0.28	7.98 ± 0.31	
Area (cm ²)	2.97 ± 0.17	3.09 ± 0.27	3.17 ± 0.18	3.07 ± 0.21	

Values given as mean plus or minus standard error of the mean.

*p < 0.05, left < right, left < noncoronary, one-way ANOVA.

Kunzelman, Grande, David et. al JTCVS 1994

	Adults, <i>n</i> = 100
Age (years)	33.8 ± 14 (19–76)
Body height (m)	1.75 ± 0.09 (1.5–2)
Body weight (kg)	71.9 ± 12.6 (42-105)
Body surface area (m ²)	1.87 ± 0.2 (1.35-2.4)
Effective height (mm)	9.5 ± 1.4 (7–12)
Aortoventricular diameter (mm)	21 ± 2.8 (13.5–30.6
Sinus Valsalva diameter (mm)	28.5 ± 3.5 (21.1–40)
Sinutubular junction (mm)	25 ± 3.7 (16–36.6)
Sinus height (mm)	22.4 ± 4.2 (33.9)

Effective height measured in 130 healthy volunteers (TTE: 100 adults, 30 children)

Bierbach Eur JCTS 2010

Geometric height measured intraoperatively in 621 patients: BAV non-fused cusp 23.8 ± 2.0 mm TAV NCC 20.7 ± 2.2 mm, LCC & RCC 20.0 ± 2.1 mm

Schäfers JTCVS 2013

Dysfunction of Aortic Cusps

Congenital Variations

Valve specimens after AVR

TAV 45 %

BAV 49 %

UAV 5 %

Roberts CIRC 2005

- Prevalence 1 2 %
- Aortopathy in 40 60 %

Nistri Heart 1999 Masri Heart 2017

Cusp fusion

Commissural orientation

Sabet Mayo Clin Proc 1994

Partial Fusion (?)

Complete Fusion

• Prevalence 0,02 %

 Unicommissural variant:

 fully developed commissure commonly in posterior location rudimentary commissures lower

> congenital fusion: RCC-LCC RCC-NCC

• Acommissural variant (rare)

- Critical AS in infancy or childhood
- AS or AR in 3rd or 4th decade of life
- Prevalence of aortopathy ?

Congenital Variations

?

- Type 0 and 1 = bicuspid
- Type 1: commissural orientation ? fusion complete / partial ?
- Type 2 = unicuspid

Sievers JTCVS 2007

Prevalence 0,01 - 0,04 %
Seven different types (A-G)
LCA displaced leftward/upward
AR in 5th or 6th decade of life
AS rare

Failure Modes

- prolapse
- retraction
- annular dilatation
- prolapse of fused cusp
- annular dilatation
 - calcification
- commissural height
- annular dilatation
- restriction

Conclusions

- The normal aortic valve function depends on correct interactions between root and cusp configuration.
- The natural aortic valve is ideally designed for unobstructed LV ejection and valve closure.
 Different cusp pathologies and morphological
- Different cusp pathologies and morphological variants exist and may lead to aortic valve dysfunction.
- In reconstruction of the aortic valve the different cusp configurations and failure modes have to be considered as part of the repair strategy.