Why and When to Repair the Aortic Valve?

Ismail El-Hamamsy, MD PhD

Associate Professor Division of Cardiac Surgery Co-Director, Aortic and Connective Tissue Clinic Montreal Heart Institute Université de Montreal

PhD Thesis – Imperial College London (2010)

THE AORTIC ROOT IS A LIVING STRUCTURE

AORTIC ROOT DYNAMICS

AORTIC VALVE STRUCTURE

El-Hamamsy et al. J Adv Res 2009

VALVE ENDOTHELIAL CELL HETEROGENEITY

TABLE 3. Differentially Expressed Genes Related to Skeletal Development and Vascular Calcification

Lower Expression on Aortic Side				Higher Expression on Aortic Side				
Gene*	Accession No.	A/V Fold Change†	Putative Effect‡	Gene*	Accession No.	A/V Fold Change†	Putative effect‡	
TNFRSF11B	U94332	-3.53	+	BMP4	NM_001202	1.57	+	
NPPC	D90337	-3.12	+	PTN	AU120808	1.53	+	
CHRD	AF209928	-1.37	+	HAPLN1	U43328	1.49	+	
РТН	V00597	-1.31	+	FBN1	X63556	1.39	+	
COL11A1	J04177	-1.44	-	CHAD	AF371328	1.37	+	
BMP1	NM_006129	-1.52	?	OSTF1	BC007459	1.24	?	
BMP6	AA426586	-1.29	?					

Simmons et al. Circ Res 2005

AORTIC VALVE CELLULAR STRUCTURE

El-Hamamsy et al. Curr Vasc Pharmacol 2009

AORTIC VALVE FUNCTION

Endothelium-Dependent Regulation of the Mechanical Properties of Aortic Valve Cusps

Ismail El-Hamamsy, MD,* Kartik Balachandran, MS,† Magdi H. Yacoub, FRS,* Louis M. Stevens, MD, SM,‡ Padmini Sarathchandra, PHD,* Patricia M. Taylor, PHD,* Ajit P. Yoganathan, PHD,† Adrian H. Chester, PHD*

El-Hamamsy et al. JACC 2009

de Montréa

OUTCOMES FOLLOWING AV SURGERY

Rationale

A LIVING AORTIC VALVE

IMPROVED CLINICALLY-RELEVANT OUTCOMES

YOUNG ADULTS

• High level of physical activity

• Quality of life

- Prolonged anticipated life expectancy
 - = Exposure to valve-related complications
 - Degeneration + Reoperation (tissue valves)
 - Bleeding + Thromboembolisms (mechanical valves)

-2-

CONVENTIONAL AVR IN THE YOUNG

EXCESS MORTALITY

CONVENTIONAL AVR

SEVERAL ADVANTAGES

- Standardized
- Easily reproducible
- Short operative times

AVR IN THE YOUNG

Observed and Relative Survival After Aortic Valve Replacement

Per Kvidal, MD,* Prof. Reinhold Bergström, PHD,‡ Lars-Gunnar Hörte, PM, BA,§ Elisabeth Ståhle, MD, PHD†

Uppsala and Stockholm, Sweden

Follow-up year

Figure 2. The annual observed (solid diamonds) and expected (open diamonds) death risk after primary AVR in patients who survived the first postoperative month (n = 2,227). The numbers (N) of patients at risk and the first year death risk are given.

Kvidal et al. JACC 2000

Université n de Montréal

AVR IN THE YOUNG

Table 4. Basic Data Concerning Observed and Expected Deaths Based on Data From Follow-Up Years 1 through 15*

	Patient- Years at Risk	Observed Number of Deaths	Expected Number of Deaths	O/E Deaths
Age (yrs)				
≤50	2,182	31	6.8	4.5
51-60	2,954.5	98	36.9	2.7
61-70	5,578.5	274	152.1	1.8
≥71	3,579	212	208.2	1.0

The younger the patients are, The higher excess mortality is

MECHANICAL AVR IN THE YOUNG

Long-term outcomes after elective isolated mechanical aortic valve replacement in young adults

Ismail Bouhout, MSc,^a Louis-Mathieu Stevens, MD, PhD,^b Amine Mazine, MSc,^a Nancy Poirier, MD,^a Raymond Cartier, MD,^a Philippe Demers, MD,^a and Ismail El-Hamamsy, MD, PhD^a

1997-2006: 469 isolated mechanical AVR <65 years

Mean follow-up: 9.1 ± 3.5 years

Follow-up 95% complete (4099 patient-years)

Mean age: 53.2 ± 9.2

Bouhout et al. JTCVS 2014

SURVIVAL – MECHANICAL AVR

SURVIVAL FREE FROM REOPERATION

A 10 years, 1 in 5 patients is dead or reoperated

Bouhout et al. JTCVS 2014

Valve-Related Complications

PROACT Trial (n=375 pts)

AVR High-risk postrandomization event comparisons

	Test group (pt-yr = 766.2)		Control group (pt-yr = 878.6)				
Primony Event	Patients	Rate	Patients	Rate	Rate Ratio	05% CI	Puelue
Primary Event	(n)	(%/pt-yr)	(n)	(%/pt-yr)	(test/ctri)	95% CI	P-value
Bleeding							
Major	12	1.57	34	3.87	0.40	0.21-0.78	0.007
Hemorrhagic stroke	1	0.13	4	0.46	0.29	0.03-2.56	0.264
Minor	9	1.17	35	3.98	0.29	0.14-0.61	0.001
Total	21	2.74	69	7.85	0.35	0.21-0.57	<0.001
Ischemic stroke	6	0.78	7	0.80	0.98	0.33-2.92	0.975
TIA	11	1.44	7	0.80	1.80	0.70-4.65	0.223
Neurologic event	17	2.22	14	1.59	1.39	0.69-2.82	0.359
Peripheral TE	4	0.52	1	0.11	4.59	0.51-41.04	0.173
All TE	21	2.74	15	1.71	1.61	0.88-3.11	0.161
Thrombosis	2	0.26	2	0.23	1.15	0.16-8.14	0.891
Major event (major bleeding, all TE, thrombosis)	35	4.57	51	5.80	0.79	0.51-1.21	0.275
Primary endpoint	44	5.74	86	9.79	0.59	0.41-0.84	0.004

Puskas et al. JTCVS 2014

TISSUE AVR IN THE YOUNG

Survival after valve replacement for aortic stenosis: Implications for decision making

Tomislav Mihaljevic, MD,^a Edward R. Nowicki, MD,^a Jeevanantham Rajeswaran, MSc,^b Eugene H. Blackstone, MD,^{a,b} Luigi Lagazzi, MD,^a James Thomas, MD,^c Bruce W. Lytle, MD,^a and Delos M. Cosgrove, MD^a

3,049 Perimount patients; 1991-2004

"...younger patients had worse than expected survival that was further diminished with insertion of a small prosthesis."

TISSUE AVR IN THE YOUNG

Very Long-Term Outcomes of the Carpentier-Edwards Perimount Valve in Aortic Position

Thierry Bourguignon, MD, Anne-Lorraine Bouquiaux-Stablo, MD, Pascal Candolfi, PhD, Alain Mirza, MD, Claudia Loardi, MD, Marc-Antoine May, MD, Rym El-Khoury, MD, Michel Marchand, MD, and Michel Aupart, MD

2,659 Perimount patients; 1984-2008

Excess Mortality in Young Adults

SVD and Death = Competing Risks

Very long-term outcomes of the Carpentier-Edwards Perimount aortic valve in patients aged 50-65 years[†]

Thierry Bourguignon^{a,*}, Pierre Lhommet^a, Rym El Khoury^a, Pascal Candolfi^b, Claudia Loardi^a, Alain Mirza^a, Julie Boulanger-Lothion^a, Anne-Lorraine Bouquiaux-Stablo-Duncan^a, Michel Marchand^a and Michel Aupart^a

Bourguignon et al. Eur J Cardiothorac Surg 2016

The Perimount Valve in the Aortic Position: Twenty-Year Experience With Patients Under 60 Years Old

Jessica Forcillo, MD, MS, Ismail El Hamamsy, MD, PhD, Louis-Mathieu Stevens, MD, PhD, David Badrudin, Michel Pellerin, MD, Louis P. Perrault, MD, PhD, Raymond Cartier, MD, Denis Bouchard, MD, MS, Michel Carrier, MD, MBA, and Philippe Demers, MD, MS

Department of Cardiac Surgery, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada

TISSUE AVR IN THE YOUNG

1981-2011: 144 isolated bioprosthetic AVRs

Exclusion: Concomitant procedures, reoperations, urgent operations

Mean age: 51 ± 9 years

Mean follow-up: 10 years

TISSUE AVR IN THE YOUNG

Forcillo et al. ATS 2014

CONVENTIONAL AVR IN THE YOUNG

CURATIVE

PALLIATIVE

EXCESS MORTALITY IS OBSERVED UP TO 60 YEARS OF AGE AT THE TIME OF SURGERY

A LIVING AORTIC VALVE =

IMPROVED OUTCOMES?

AORTIC VALVE REPAIR

IS IT WORTHWHILE? Why?

IS IT DURABLE? When?

AORTIC VALVE REPAIR

• No randomized trials

• Single-center (single-surgeon) series

SURVIVAL

SURVIVAL

Risk of Valve-Related Events After Aortic Valve Repair

Joel Price, MD, MPH, Laurent De Kerchove, MD, David Glineur, MD, PhD, Jean-Louis Vanoverschelde, MD, PhD, Philippe Noirhomme, MD, and Gebrine El Khoury, MD

1995-2010: 475 elective AV repair (AI or aneurysm)

Mean age: 53 ± 16 years

Mean follow-up: 4.6 years

Price et al. Ann Thor Surg 2013

SURVIVAL

Risk of Valve-Related Events After Aortic Valve Repair

Joel Price, MD, MPH, Laurent De Kerchove, MD, David Glineur, MD, PhD, Jean-Louis Vanoverschelde, MD, PhD, Philippe Noirhomme, MD, and Gebrine El Khoury, MD

Price et al. Ann Thor Surg 2013

de Montréa
Valve repair improves the outcome of surgery for chronic severe aortic regurgitation: A propensity score analysis

Christophe de Meester, MS,^{a,b} Agnès Pasquet, MD, PhD,^{a,b} Bernhard L. Gerber, MD, PhD,^{a,b} David Vancraeynest, MD, PhD,^{a,b} Philippe Noirhomme, MD,^{a,c} Gébrine El Khoury, MD,^{a,c} and Jean-Louis J. Vanoverschelde, MD, PhD^{a,b}

de Meester et al. JTCVS 2014

A quarter of a century of experience with aortic valve-sparing operations

Tirone E. David, MD, Christopher M. Feindel, MD, Carolyn M. David, BN, and Cedric Manlhiot, BSc

1988-2010: 371 consecutive valve-sparing procedures (~15/year)

Mean age: 47 ± 15 years

Median follow-up: 8.9 years

David et al. JTCVS 2014

A quarter of a century of experience with aortic valve-sparing operations

Tirone E. David, MD, Christopher M. Feindel, MD, Carolyn M. David, BN, and Cedric Manlhiot, BSc

Aortic valve repair leads to a low incidence of valve-related complications

Diana Aicher^a, Roland Fries^b, Svetlana Rodionycheva^a, Kathrin Schmidt^a, Frank Langer^a, Hans-Joachim Schäfers^{a,*}

1995-2007: 640 consecutive valve-sparing procedures

81% of all patients with AI

Mean age: 56 ± 17 years

Mean follow-up: 4.8 years

Aicher et al. EJCTS 2010

Aortic valve repair leads to a low incidence of valve-related complications

Diana Aicher^a, Roland Fries^b, Svetlana Rodionycheva^a, Kathrin Schmidt^a, Frank Langer^a, Hans-Joachim Schäfers^{a,*}

10% acute dissection

Survival for the whole patient cohort was 92% at 5 years and 80% at 10 years with significantly better survival in patients with a bicuspid rather than a tricuspid AV (p = 0.0004). Survival at 10 years was worse in patients with concomitant coronary artery bypass grafting (75% vs 85%; p = 0.42).

- No studies into the second decade
 - Mean follow-up <10 years</p>

- ~80% survival at 10 years despite:
 - Inclusion of acute type A dissections
 - Connective tissue disorders

FREEDOM FROM ALL VALVE-RELATED COMPLICATIONS

(Reoperation, endocarditis, thromboembolism and hemmorhage)

Aicher et al. EJCTS 2010

A quarter of a century of experience with aortic valve-sparing operations

Tirone E. David, MD, Christopher M. Feindel, MD, Carolyn M. David, BN, and Cedric Manlhiot, BSc

Freedom from					
	1	5	10	15	18
Mortality	97.3 ± 0.8	94.6 ± 1.2	89.0 ± 2.0	79.7 ± 3.4	76.8 ± 4.3
Reoperation*	99.7 ± 0.3	99.7 ± 0.3	97.0 ± 1.3	94.8 ± 2.0	94.8 ± 2.0
Aortic insufficiency	99.7 ± 0.3	99.6 ± 0.4	93.2 ± 2.0	90.7 ± 2.6	78.0 ± 4.8
Mitral insufficiency	100	99.2 ± 0.6	92.8 ± 2.1	88.8 ± 3.5	88.8 ± 3.5
Thromboembolism§	99.5 ± 0.4	96.6 ± 1.0	94.1 ± 1.5	92.2 ± 2.4	90.1 ± 3.2
Valve-related event	98.1 ± 0.6	95.5 ± 1.1	91.2 ± 2.4	85.5 ± 3.8	79.4 ± 4.6

Reported Outcome After Valve-Sparing Aortic Root Replacement for Aortic Root Aneurysm: A Systematic Review and Meta-Analysis

Bardia Arabkhani, MD, Aart Mookhoek, MD, Isabelle Di Centa, MD, Emmanuel Lansac, MD, PhD, Jos A. Bekkers, MD, PhD, Rob De Lind Van Wijngaarden, MD, PhD, Ad J. J. C. Bogers, MD, PhD, and Johanna J. M. Takkenberg, MD, PhD

Variable	Pooled Data	Range	Included Studies (n)
Total patient number	4.777	32-430	31
Surgical period	1988-2012		31
Mean age (years)	51.0	29-63	30
Gender, male (%)	71.0	57%-85	30
Comorbidity			
Connective tissue disease (%)	23.9	0–100	35
Severe aortic regurgitation (%)	46.1	6.4–100	25
Bicuspid aortic valve (%)	14.1	0-33	28
Prior cardiac operation (%)	4.49	2–12	14
Other indications			
Acute type A dissection (%)	10.5	0-33	28

Arabkhani et al. ATS 2015

Reported Outcome After Valve-Sparing Aortic Root Replacement for Aortic Root Aneurysm: A Systematic Review and Meta-Analysis

Bardia Arabkhani, MD, Aart Mookhoek, MD, Isabelle Di Centa, MD, Emmanuel Lansac, MD, PhD, Jos A. Bekkers, MD, PhD, Rob De Lind Van Wijngaarden, MD, PhD, Ad J. J. C. Bogers, MD, PhD, and Johanna J. M. Takkenberg, MD, PhD

Pooled Late Outcome Events	LOR + 95%~CI	Heterogeneity (I ²)	Included Studies (n)	Events (n)	Patient Years (n)
Late mortality	1.53 (1.19–1.96)	82.6	31	262	21,274
Reoperation on aortic valve	1.32 (1.0-1.74)	72.3	31	228	21,274
Hemorrhage	0.23 (0.13-0.42)	78.7	26	15	19,158
Thromboembolism	0.41 (0.22-0.77)	27.6	26	42	19,158
Endocarditis	0.23 (0.11-0.51)	0.00	30	29	20,930
MAVRE	1.66 (1.24–2.23)	100	20	300	19,158

Table 2. Linearized Occurrence Rates of Late Outcome Events

Quality of life after aortic valve surgery: Replacement versus reconstruction

Diana Aicher, MD,^a Annika Holz,^a Susanne Feldner, MD,^a Volker Köllner, MD,^b and Hans-Joachim Schäfers, MD^a

		No.	Sex (male/female)	Age at operation (y, mean ± SD)	Age at survey (y, mean ± SD)
AV REPAIR	Group I	87	63:24	38 ± 6	40 ± 6
MECHANICAL	Group II	40	35:5	40 ± 7	46 ± 7
ROSS	Group III	39	27:12	40 ± 7	46 ± 7

TABLE 1. Patient characteristics

Valve-specific	Group	Group	Group	Р		
questions	I	п	ш	value		
1. If I had to do it over again, would I make the same decision to have						
surgery?						
Yes	94.0%	89.7%	100.0%	.821		
I don't know	3.6%	7.7%	0.0%			
No	2.4%	2.6%	0.0%			
2. Is there a valve sound	that bothers	me?		\frown		
Never/rarely	91.5%	41.0%	92.4%	<.001		
Occasionally	6.1%	33.3%	5.1%	\smile		
Frequently/always	2.4%	25.7%	2.5%			
3. Following my valve s	urgery, the fr	equency of a	doctor visits	and blood		
tests bothers me.		61 60V	04.00/			
Never/rarely	75.9%	01.0%	84.2%	.011		
Occasionally	20.5%	17.9%	13.2%			
Frequently/always	3.6%	20.5%	2.6%			
4. The possibility of com	plications due	to my imple	inted valve co	oncerns me.		
Never/rarely	48.2%	48.7%	01.5%	.309		
Occasionally	43.4%	30.8%	33.3%			
Frequently/always	8.4%	20.5%	5.2%			
 1 am concerned about medication. 	possible blee	eding caused	by my antic	oagulant		
Never/rarely	80.5%	43.6%	79.5%	<.001		
Occasionally	12.2%	15.4%	7.7%	\smile		
Frequently/always	7.3%	41.0%	12.8%			
6. I am afraid that my va	alve may fail					
Never/rarely	53.7%	51.3%	76.9%	.036		
Occasionally	34.1%	28.2%	17.9%	\bigcirc		
Frequently/always	12.2%	20.5%	5.2%			
7. I am afraid that I may	need anothe	r valve open	ation.			
Never/rarely	38.0%	48.7%	53.8%	.382		
Occasionally	45.0%	25.6%	25.6%			
Frequently/always	17.0%	25.7%	20.6%			

INSTITUT DE CARDIOLOGIE

DE MONTRÉAL

Université m

de Montréal

Aicher et al. JTCVS 2011

Quality of life after aortic valve repair is similar to Ross patients and superior to mechanical valve replacement: a cross-sectional study

Pavel Zacek^{1*†}, T. Holubec^{2†}, M. Vobornik¹, J. Dominik¹, J. Takkenberg³, J. Harrer¹ and J. Vojacek¹

Conclusions: Postoperative quality of life is influenced by the type of aortic valve procedure and is negatively linked with mechanical prosthesis implantation and long-term anticoagulation. Aortic valve-sparing strategy should be considered in cases with suitable valve morphology due to favorable clinical results and beneficial impact on the long-term quality of life.

HEMODYNAMICS

HEMODYNAMICS

Comparison of Hemodynamics After Aortic Root Replacement Using Valve-Sparing or Bioprosthetic Valved Conduit

Jeremy D. Collins, MD, Edouard Semaan, MD, Alex Barker, PhD, Patrick M. McCarthy, MD, James C. Carr, MD, Michael Markl, PhD, and S. Chris Malaisrie, MD

Collins et al. ATS 2015

HEMODYNAMICS

Comparison of Hemodynamics After Aortic Root Replacement Using Valve-Sparing or Bioprosthetic Valved Conduit

Background. The purpose of this study is to compare aortic hemodynamics and blood flow patterns using internet of the second patterns using inconclusions. The VSARR results in improved hemodynamic outcomes when compared with BIO-ARR, as indicated by reduced peak velocities in the aortic root and less helix flow in the AAo by 4D flow MRI. Longitudinal research assessing the clinical impact of these differences in hemodynamic outcomes is warranted.

the aortic root and AAo in both VSARR and BIO-ARR were elevated compared with controls (1.1 to 1.3m/

(Ann Thorac Surg 2015;100:1556–62) © 2015 by The Society of Thoracic Surgeons

Collins et al. ATS 2015

AORTIC VALVE REPAIR

WHEN?

To Preserve or Not to Preserve?

MECHANISMS OF AI

THE MOST COMMON MECHANISM IN BAV

MECHANISMS OF AI

Prolapse of the fused cusp

COMMISSURAL ORIENTATION

ANNULAR DILATATION

IMPROVEMENTS IN SURGICAL TECHNIQUE

RELEVANCE OF CUSP PROLAPSE

RELEVANCE OF CUSP PROLAPSE

EFFECTIVE HEIGHT

RELEVANCE OF CUSP PROLAPSE

EFFECTIVE HEIGHT

CUSP RETRACTION

GEOMETRIC HEIGHT

COMMISSURAL ORIENTATION

ROLE OF AORTIC ANNULOPLASTY

CUSP REPAIR TECHNIQUES

AVOIDANCE OF PATCH REPAIR

Boodhwani et al. JTCVS 2010

AV Repair Durability

Aortic valve repair leads to a low incidence of valve-related complications

Diana Aicher^a, Roland Fries^b, Svetlana Rodionycheva^a, Kathrin Schmidt^a, Frank Langer^a, Hans-Joachim Schäfers^{a,*}

Favorable ECHO Characteristics (BAV)

- CUSPS
 - Pliable
 - Little to no calcium
 - Sufficient length of coaptation
- AORTIC ANNULUS
 - <28mm
- COMMISSURES

Circumferential orientation 160-180°

Favorable INTRAOP Characteristics (BAV)

- CUSPS
 - Pliable
 - Geometric height ≥21mm
 - Little to no calcium/fenestrations

- COMMISSURES
 - Circumferential orientation 160-180°

25 yo male with BAV (R-L fusion) Severe eccentric AI with LV dilatation Annulus = 30mm Sinus = 39mm STJ = 38mm

25 yo male with BAV (R-L fusion) Severe eccentric AI with LV dilatation

Subcoronary Annuloplasty ring Restoration of effective height STJ Tailoring

61 yo male with BAV (R-L fusion) Severe AI with LV dilatation Annulus = 28mm Sinus = N STJ = N

61 yo male with BAV (R-L fusion) Severe AI with LV dilatation Annulus = 28mm Sinus = N STJ = N

61 yo male with BAV (R-L fusion) Severe AI with LV dilatation

Subcoronary Annuloplasty Ring Extensive cusp effective plication to restore effective height

61 yo male with BAV (R-L fusion) Severe AI with LV dilatation

1 Year postop Bioprosthetic AVR

SUMMARY

AORTIC VALVE REPAIR

- WHY?
 - Survival
 - Valve-related complications
 - Quality of life

- WHEN?
 - Echo and intraop determination
 - Feasibility doesn't always mean durability JUDGEMENT

i.elhamamsy@icm-mhi.org

