

Anatomy of aortic valve and root

Emmanuel Lansac MD PhD

Cardiac Surgery Institut Mutualiste Montsouris, Paris, France

The aortic valve : a passive or dynamic structure?

Leonardo da Vinci 1508 Quadr Anat IV

Belhouse Cir Res 1969 In vitro Vortex formation

Brewer JTCVS 1976 Interdependence of valve opening and root expansion

Dagum Circulation 1999 Deformational dynamics of the aortic root (60Hz)

Diastole

Thubrikar JTCVS 1979 : In vivo 9% commissural expansion prior ejection Circular orifice

Sino-tubular junction

Aortic annulus

3D

Anderson et al. ATS 1991

2D

2D

Aortic Root = 2 functional compartments

SUPRAVALVULAR COMPARTMENT:

STJ + ascending aorta

Aortic Hemodynamics

SUBVALVULAR SUBVALVULAR

SUBVALVULAR COMPARTMENT:

Aortic annular Base +

Commissures (inter-leaflet triangles)

LV Hemodynamics

Sutton et al. ATS 1995 Lansac et al. EJTCS 2002

Aortic root expansion starts prior to ejection

36.7 ± 3.3% of root volume expansion

Aortic valve opening starts prior to ejection (2.1±0.5%)

Related to annular base and commissural (subvalvular compartment) pre-ejectional expansion

Correlated to LV pressure increase (r=0.95)

Due to a redistribution of LV volume below the leaflets (inter-leaflet triangle)

Optimize ejection

Stressless opening

Lansac et al. EJTCS 2002; 22:497-503

Aortic valve opening is maximum during the 1/3 of ejection

unimpeded blood flow through the sino-tubular junction to the systemic circulation

Aortic root expansion is asymetric Tilt angle of the aortic valve during cardiac cycle

End diastole: 16.3±1.5° postero-left

During systole:- 6.6±1.5°

Alignement of LVOT and ascending aorta

Maximize ejection

During diastole:+ <u>6.6±1.5°</u> Shock absorber

Lansac et al. JHVD 2005; 14:400-407

Importance of Sinuses of Valsalva

Leonardo da Vinci 1508 Quadr Anat IV **Belhouse Cir Res 1969** In vitro Vortex formation Kilner Circulation 1993 3D MRI

Recirculating flows (vortices) accommodated by the sinuses contribute to efficient and smooth valve closure at end systole

Katawama 2008

Aorto mitral junction dynamics : two to tango

Transverse Ø : -12.1±1.5% Antero Posterior Ø : -23.6±2.5%

Lansac et al. JTCVS 2002; 123:911-918

Annulus excursion during cardiac cycle 13 ± 2.3 mm

Annulus excursion contributes to an efficient cardiac output

The angle between the mitral and aortic annulus reduces 11 ° in systole.

Alignement of LVOT and ascending aorta Maximize ejection

Sughimoto JHVD 2010

Goetz Am J Physiol Heart Circ 2005, Asian CVT annals 2006

What are the normal diameters of the aortic root?

Roman 1987 Nistri 1999 Varnous 2003 Maselli 2005 Babee 2007 Tamas 2007 Soncini 2009 Bierbach 2010 Zhu 2011

Geometry of the aortic annulus

Echo diameter in long axes correspond to smallest diameter

maximum CT-Ø / minimum CT-Ø =1.26

Aortic annulus is oval shaped

Expansibility of the aortic root

	Leygh 1999 Echo	De Paulis 2002 Echo	Varnous 2003 Echo	Kazui 2004 Echo	Maselli 2005 Echo	Matsumori 2007 Echo	De Heer 2011 CT scan	Zhu 2001 Echo
Ν	599							
Annular base	5.7% (2.5-9.6)							
SoV	4.3% (0.5-10.3)							
STJ	5.4% (1.7-9.8)							

Aortic annulus and STJ expansion

Parameters for valve coaptation

sinus Ø, aortoventricular Ø

Schäfers JTCVS 2012 Marom JTCVS 2012

What is the aortic annulus from a surgical point of view ?

Ventriculo-aortic junction

Virtual ring

From Anderson R. with permission

External Dissection of the Subvalvular Plane

Aortic annuloplasty can be performed in the subvalvular plan, except at the level of the infundibulum where the dissection stops 1,4±1,8 mm above the nadir of the right coronary sinus (80% below or within 3mm above the nadic of the Khelil et al ATS 2015

External dissection of the aortic root leads to above the level of the aortic annulus from the LC/RC to the RC/NC commissure.

Main limitation of external dissection of the subvalvular plane is the membranous septum

De Kerchove, JTCVS 2015

External aortic annuloplasty induces a minimum of 5 mm reduction of aortic annular base diameter, corresponding to tissue thickness

Khelil et al ATS 2015

Aortic valveBicuspid valveTricuspidType 0Type0 raphe1 rational

Type 1 1 raphe

Unicuspid valve Type 2 2 raphes

Good candidates for repair

Landmarks to AV conduction system

Left bundle branch descends from nadir of hinge of right coronary leaflet

From Anderson R. with permission

From Anderson R. with permission

Dynamic anatomy

Valve repair

Aortic Root expansion Dilated STJ > 35 mm **Stress less opening and** closure of the valve **Clover shape orifice Cusp effective** height Dilated annulus >25 mm Annulus < STJ Ratio 1.2

Treatment of dilated diameters Aortic annular base Ø STJ Ø

Preserves root dynamics

Neosinuses of valsalva Systolic expansion (interleaflet triangles)

> Restores cusp effective height

Restores ratio

Durability of a native valve

Durability of repair