

Anatomy of aortic valve and root

Emmanuel Lansac MD PhD

Cardiac Surgery
Institut Mutualiste Montsouris,
Paris, France
$\underset{\text { HGMF }}{\substack{\text { HINSTITUT } \\ \text { MUTULISTE } \\ \text { MONTSOURIS }}}$

The aortic valve : a passive or dynamic structure?

Leonardo da Vinci 1508
Quadr Anat IV

Belhouse Cir Res 1969 In vitro Vortex formation

Brewer JTCVS 1976 Interdependence of valve opening and root expansion

Dagum Circulation 1999 Deformational dynamics of the aortic root $(60 \mathrm{~Hz})$

Aortic Root = 2 functional compartments

SUPRAVALVULAR COMPARTMENT:

STJ + ascending aorta

Aortic Hemodynamics

SUBVALVULAR COMPARTMENT:

Aortic annular Base +
Commissures (inter-leafiet triangles)
LV Hemodynamics

Aortic root expansion starts prior to ejection

 $36.7 \pm 3.3 \%$ of root volume expansion

Aortic valve opening starts prior to ejection
 (2.1 $\pm 0.5 \%)$

Related to annular base and commissural (subvalvular compartment) pre-ejectional expansion

Correlated to LV pressure increase ($\mathrm{r}=0.95$)

Due to a redistribution of LV volume below the leaflets (inter-leaflet triangle)

Optimize ejection
 Stressless opening

Aortic valve opening is maximum during the $1 / 3$ of ejection

Maximizes hemodynamic performance unimpeded blood flow through the sino-tubular junction to the systemic circulation

Aortic root expansion is asymetric Tilt angle of the aortic valve during cardiac cycle

End diastole: $16.3 \pm 1.5^{\circ}$ postero-left
During systole:- $6.6 \pm 1.5^{\circ}$
Alignement of LVOT and ascending aorta

Maximize ejection

During diastole:+ $6.6 \pm 1.5^{\circ}$

\longrightarrow Shock absorber

Importance of Sinuses of Valsalva

Leonardo da Vinci 1508 Quadr Anat IV

Belhouse Cir Res 1969
In vitro Vortex formation

Kilner Circulation 1993 3D MRI

Recirculating flows (vortices) accommodated by the sinuses contribute to efficient and smooth valve closure at end systole

Aorto mitral junction dynamics : two to tango

DIASTOLE

SYSTOLE

Transverse Ø : -12.1 $\pm 1.5 \%$ Antero Posterior \varnothing : -23.6 $\pm 2.5 \%$

Annulus excursion during cardiac cycle $13 \pm 2.3 \mathrm{~mm}$

Annulus excursion

 contributes to an efficient cardiac outputThe angle between the mitral and aortic annulus reduces 11° in systole.

Alignement of LVOT and ascending aorta Maximize ejection

What are the normal diameters of the aortic root?

N	1132
Annulus \varnothing	$22.3 \pm 1,4(20.5-32.4)$
STJ Ø	$26.7 \pm 2.2(31.2-23.4)$
STJ/ annulus	$1.2 \pm 0.1(1.1-1.3)$

STJ> Annulus
Ratio = 1.2 (1.1-1.3)

Geometry of the aortic annulus

Echo diameter in long axes correspond to smallest diameter maximum CT- \varnothing / minimum CT- $\varnothing=1.26$

Aortic annulus is oval shaped

Expansibility of the aortic root

	$\begin{gathered} \text { Leygh } \\ 1999 \\ \text { Echo } \end{gathered}$	$\begin{aligned} & \text { De Paulis } \\ & 2002 \\ & \text { Echo } \end{aligned}$	Varnous 2003 Echo	$\begin{gathered} \text { Kazui } \\ 2004 \\ \text { Echo } \end{gathered}$	Maselli 2005 Echo	$\begin{aligned} & \text { Matsumori } \\ & 2007 \\ & \text { Echo } \end{aligned}$		$\begin{aligned} & \text { Zhu } \\ & 2001 \\ & \text { Echo } \end{aligned}$
N	599							
Annular base	5.7\% (2.5-9.6)							
SoV	4.3\% (0.5-10.3)							
STJ	5.4\% (1.7-9.8)							

Aortic annulus and STJ expansion

Parameters for valve coaptation

gH
Bicuspid : nonfused 24 ± 2 mm
Tricuspid:
NC : 21 ± 2 / LC : 20 ± 2 / RC 20 ± 2

Correlates with body height, weight, BSA, sinus \varnothing, aortoventricular \varnothing

\downarrow eH from 10.9 to 8.0 mm
$\downarrow \mathrm{cH}$ from 3.3 to 0.3 mm

What is the aortic annulus from a surgical point of view ?

STJ

Ventrflculo-aortlc Junctlon

Virtual ring

From Anderson R. with permission

External Dissection of the Subvalvular Plane

Aortic annuloplasty can be performed in the subvalvular plan, except at the level of the infundibulum where the dissection stops $\mathbf{1 , 4 \pm 1 , 8} \mathbf{~ m m}$ above the nadir of the right coronary sinus
(80\% below or within 3mm above the nadic of the Khelil et al ATS 2015

$4,6 \mathrm{~mm}$ $2,4 \mathrm{~mm}$ mm

External dissection of the aortic root leads to above the level of the aortic annulus from the LC/RC to the RC/NC commissure.

Main limitation of external dissection of the subvalvular plane is the membranous septum

External aortic annuloplasty induces a minimum of 5 mm reduction of aortic annular base diameter, corresponding to tissue thickness

Aortic valve Tricuspid

Bicuspid valve

Type 0 0 raphe

Type 1 1 raphe

Good candidates for repair

Unicuspid valve Type 2
2 raphes

Landmarks to AV conduction system

Left bundle branch descends

 from nadir of hinge of right coronary leafletFrom Anderson R. with permission

From Anderson R. with permission

Dynamic anatomy

Valve repair

Aortic Root expansion
=
Stress less opening and closure of the valve

Cusp effective height

Annulus < STJ Ratio 1.2

Dilated STJ > 35 mm

Dilated annulus >25 mm

Treatment of dilated diameters
Aortic annular base \varnothing STJ Ø

Preserves root dynamics Neosinuses of valsalva Systolic expansion
(interleaflet triangles)

Restores cusp effective height

Restores ratio

