

Always do a remodelling?

Emmanuel Lansac, Isabelle Di Centa

Cardiac Surgery
Institut Mutualiste Montsouris,
Paris, France

Aortic Valve Sparing/repair

- 31 publications; surgery from 1968-2012
- N = 4,777 (21,716 pt yrs), mean pooled age 51 years, 71% male
- Bicuspid valve: 14% (range 0-33%)
- Acute dissection: 10% (range 0-37%)
- Severe (grade II-IV) AR: 46% (range: 6-100%)
- Remodeling (4 papers), reimplantation 15 papers, mixed 12 papers
- Operative mortality: 2.2%

	Linearized occurrence rate	95% CI
Late mortality	1.5%/yr	1.2-2.0%/yr
Reoperation	1.3%/yr	1.0-1.7%/yr
TE	0.4%/yr	0.2-0.8%/yr
Bleeding	0.2%/yr	0.1-0.4%/yr
MAVRE	1.7%/yr	1.2-2.2%/yr

Arabkhani et al. ATS 2015, in press

Remodeling or Reimplantation?

No clinical advantages in terms of survival and reoperation of Remodeling over Reimplantation

Annulus dilation = risk factor for repair failure

- → favor valve sparing root replacement providing an aortic annuloplasty :
- -through proximal suture using the reimplantation technique
- or annuloplasty ring device in combination with the remodelling technique.

Goals for aortic valve repair

treat dilated aortic annulus and STJ Ø

preserve root dynamics (neosinuses of Valsalva)

preserve expansibility (interleaflet triangles)

restore coaptation and effective height

Need for standardization

2002

Rankin 2011

Aortic annuloplasty and valve sparing root replacement?

Risk factor for failure of the Remodeling : Annulus dilation >25-28 mm

Reimplantation performs a subvalvular annuloplasty

Remodeling alone is a contraindication if annulus>25 mm

Burkhart JHVD 2003

Lansac EJTCVS 2006

Hanke JTCVS 2009

David JTCVS 2010

Kunihara JTCVS 2011

Dilated aortic annulus > 25 - 28 mm

Risk factor for failure

Luciani ATS 1999, Lansac EJTCS 2006, Hanke JTCVS 2008, de Kerchove JTCVS 2010, Schäfers JTCVS 2013, Navarra EJTCVS 2013, Aicher JTCVS 2013, Vallabhajosyula ATS 2014

Circumferential aortic annuloplasty improves the results

External ring, proximal suture reimplantation, Annular stitch)

De Kerchove JTCVS 2011

Aicher JTCVS 2013

Aortic root dynamics after valve sparing

Leyh RG. Circulation 1999

Cusp motion and expansibility of the aortic root are best preserved

- 1) after Remodeling than after Reimplantation
- 2) with graft with neo-sinuses of Valsalva than without

Remodeling provides the most physiological root reconstruction

Physiological and standardized approach to Valve Sparing Root Replacement

Remodeling more physiologic RF failure annulus > 25 mm

Remodeling + subvalvular annuloplasty

Reasons for valve sparing failures

Cusp prolapse

Remodeling / Reimplantation

Symmetrical prolaspse

↓ eH : - 3 to - 4 mm

No eH resupension (Eye balling repair)

Risk factor for Al recurrence Reoperation

Lansac JTCVS 2010

Bierbach E Jeanmart ATS 2007 Kunihara JTCVS 201 Cusp eH resuspension Marom JTCVS 2012 De Paulis 2010 Zacek with permission

Moving from Valve Sparing to a standardized approach of Aortic valve REPAIR

Physiological root Remodeling

Resuspension of cusp effective height

Expansible aortic annuloplasty

Remodeling + annuloplasty: advantages over Reimplantation?

Reimplantation

Remodeling + Ring

Selected cases (Al ≤ Grade II)

STS Database, EACTS 2013

How high do I place the commissures? How do I place them circumferentially?

Eye Balling valve repair

3) Leaflets

2) Leaflets (eH caliper)

3) Annuloplasty

Standardize Valve repair
With a physiological root reconstruction

1.Dissection of the subvalvular plane

2. Inspection of cusp lesions Geometric height

Retracted if <16 mm in tricuspid and <19 mm in bicupid

Standardization based on aortic annulus Ø

Fabric Thread	00000	Aortic annular base Ø (Hegar dilators, mm)					
Elastoner Rings		25-27	28-30	31-35	36-40	> 40	
Valsalva graft® Ø (mm)		26	28	30	32	34	
Extra aortic ring® Ø (mm)		25	27	29	31	33	

Subvalvular ring = down size from one size

3. 6 subvalvular « U » stitches

4. Aligment of cusp free edges prior Remodeling

5. Suture of the Remodeling

6. Cusp resuspension <u>after</u> the Remodeling (effective height 9 mm)

7. Subvalvular ring implantation

700 Aortic valve repair using an external aortic ring

Operative mortality 1.2%

IMM series
238 patients
(In process)

Survival 97%, freedom from reoperation 95% at 10y 80 % freedom from Al>1 and 95% from Al>2 à 10y Bicuspid 40%, no differences with tricuspid or phenotype

CAVIAAR Trial
JTCVS 2015

130 valve repair versus 131 CVG

30 days mortality 3.8% in each group

Despite longer crossclamp times and a learning curve in the REPAIR group, there is no increase in post operative morbi-mortality compared to CVG group

At 30 days, <u>REPAIR group</u> showed a trend towards <u>reduce Major Adverse</u> <u>Valve Related Events</u> compared to CVG group (3.8% versus 9.2%, p<0.08)

Root dynamics study (60 pts) EJTCVS 2015 Expansibility is preserved at the aortic annular base and SoV levels up to 19 months (1-64)

Independently of age and bicuspid valve

Pliable bicuspid and tricuspid valves

Aortic root aneurysm

Valsalva ≥45 mm

Supracoronary aneurysm

Valsalva<40 mm

Isolated AI

all $\emptyset < 40 \text{ mm}$

Standardized approach according to phenotypes

Remodeling

+ subvalvular annuloplasty

Supra-coronary graft

+ subvalvular annuloplasty (annulus > 25 mm)

Supra-valvular annuloplasty (STJ> 35 mm)

Subvalvular annuloplasty

(annulus> 25 mm)

Cusp repair

Subvalvular external aortic annuloplasty

Open Prospective International Multicenter Registry

Isolated AI and/or ascending aorta aneurysm Candidates for Aortic valve repair / sparing

Surgical indication

No

Yes

Medical Registry (In process)

Surgical Registry
Aortic valve Repair / sparing and Replacement

Evaluation of the Guidelines

Evaluation of the results

Open to all center, Join us! AVIATOR@HeartValveSociety.org

