Saarland University, Medical Faculty PhD-Program

Medical statistics

PD Dr. Stefan Gräber
Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg

Content overview (1)

- Study question and hypothesis
- Study design
- Basic terms
- Descriptive statistical analysis (frequency tables, summarizing measures, graphical presentation)

Content overview (2)

- Confirmatory statistical analysis (statistical test, confidence interval)
- Special approaches (regression analysis, survival analysis)

Study question and hypotheses

- Study question is the clear definition of issue which shall be answered with the study.
- Hypotheses will be derived from the question. They are more specific and may be confirmed or rejected by a statistical test.
- Collecting data without study question is unscientific!

Examples (1)

- Which treatment of varicosis* (stripping or ELT) is better?
- Does drug A reduce the systolic blood pressure?
- The infection rate of ELT is 3% and of stripping 15%.
- The average reduction of blood pressure by drug A is 10 mmHg .
* Varicose veins (commonly on the leg) are veins that have become enlarged and tortuous, because the leaflet valves to prevent blood from flowing backwards are insufficient.

Examples (2)

- Is overweight a risk - When BMI > 30 the factor for stroke?
- How is the prognosis after the complete ectomy of a colon tumor?

Statistical model

Exposure

Explanatory variable or factor, e.g. treatment
caused by $/ \longrightarrow$ Outcome dependent on?

Outcome variable, e.g. difference of blood pressure

> e.g. age, gender, comorbidity

How to get data?

- Experiment
- Survey
- Trial
- Study

Study type

- If exposure is manipulated, you perform an experimental or interventional study (trial).
- If exposure is not manipulated, you perform a non-experimental or observational study.

Study type: Interventional

- Controlled
- Randomized: Randomized controlled trial (RCT)
- Non-randomized (quasi-experimental)
- Non-controlled

Example: Hypericum study (1)

- Objective: To investigate the efficacy of hypericum extract LI160 (St John's wort) compared with placebo in patients with mild or moderate major depression.
- Design: Randomized controlled double blind multicenter trial
- Setting: 3 psychiatric primary care units

Example: Hypericum study (2)

- Participants: 89 adult outpatients with mild or moderate depression (Hamilton score < 17)
- Interventions: LI160 or placebo three times a day for four weeks
- Main outcome variable: Change in Hamilton score from baseline to day 28

Hamilton Rating Scale for
Depression

Anwendung: Depressives Syndrom, fur
psychiatrische Patienten enwickelt, aber auc ur Patienten mit anderen Diagnosen verwend
Bereich: Uberwic wisser ersuchungen
Ergebnisbereich: O-55 Punkte: eine hoh
Punktzahl charakterisiert einen hohen Schwe
egrad der Depression . Developent of
ing scale for primary depressive illness. Br

1. Depressed mood
saa. hopeless. heipless, wormics
o Absent
Gloomy attitude, pessimism, hopeless
ness
2 Occasional weeping
${ }_{4}$ Frequent weeping Patient reports highlight these feeling states in hisher spontaneous verbal and

2. Feelings of guilt

- Absent

Selt-reproach, leels he/she has let people
$2 \quad \begin{aligned} & \text { Ideas of guilt or rum } \\ & \text { rors or sinfut deeds }\end{aligned}$
Present illness is punishment
Hears accusatory or denunciatory voices
and/or experiences threatening visual hallucinations. Delusions of guilt
3. Suicide

- Absent

1. Feels life is not worth living

2 Wishes he/she were dead, or any
3 Suicide, ideas or halt-hearted attempt
serous anemp
4. Insomnia, eariy

- No difficulty falling asleep

Complaints of occasional difficulty in
talling asteep i. e. more than halt-hour
2 Complaints of nightly difficulty in falling
5. Insomnia, middle

- No difficulty

1 Patient complains of bein
2 Waking during the night - any getting out
6. Insomnia, late

- No difficulty

Waking in the early hours of the morning
2 Unable to tall asleep again if he/she gets
7. Work and activities
o No difficulty
Thoughts and feelings of incapacity
lated to activities: work of hobbies
2 Loss of interest in activity - hobbies work - either directuly reported by patient
or indirectly seen in listlessness, in ocincirectly seen in listiossness. in decisions and vacillation (teels he/she
has to push self to work or activities)
3 Decrease in actual time spent in activities Decrease in actual time spent in activities
or decrease in productivit, In hospotal.
rate 3 if patient does not spend at itaast ate 3 if patient does not spend
three hours a day in activities
4.osped working because of present ilin no activities except supervised ward

3. Retardation

Sowness of thought und speechs: impaired abi . Normal speech and thought
. sight retardation at interview
3 Interview difficult
4 Interview impossible

9. Agitation

- None
${ }_{1}$ Fidgetness
2 Playing with hands. hair. obvious res
3 Moving about: can't sit still
4 Hand wringing, nait biting. hair putting.

10. Anxiety, psychic

Demonstrated by:
-subjectnve rension and irritabiliry: loss in
worning about minor matters

- apprenension fears expressed vithout questionin
- feelings of panic
- Absent
$\begin{array}{ll}1 & \text { Mild } \\ 2 & \text { Moderation }\end{array}$
$\begin{array}{ll}2 & \text { Moderat } \\ 3 & \text { Severe }\end{array}$
4 Incapacitating

1. Anxiety, somatic

Physiological concomitants of anxiery such as: gastrointestinal: dry mouth wind. indi
stion diarrhoea. cramps. belching stion, diarrhoea. cramps. belching
cardiovascular: palpitarions. headache - raspiovacor, hyperventilarion. sighing
urinary frequency urinary fr
swearing

- swearing
zididiness. blurred vision
rinnits
- Absent

	Absent
1	Mild

2 Moderate
3 Severe
4 Incapacitating
12. Somatic symptoms; gastrointestinal - None

1 Loss of appeti
Difficulty eating without urging. Requests
or requires laxation or mecication for Gi
13. Somatic symptoms; genera

- None

Heaviness in limbs, back or head;
backacnes, headaches. muscle aches, backaches, headaches, m
loss of energy, fatiguability
2 Any clear-cut symptom rates 2
14. Genital symptoms

Symptoms such as: loss of libido. menstrual disturbances:

$$
\begin{aligned}
& \text { Abser } \\
& \text { Milid }
\end{aligned}
$$

15. Hypochondriasis

- Not present

1 Selt-absorption (bocily)
2 Precccupation with hearth
3 Strong conviction of some bodily illness
4 Hypochondriacal delusions
16. Loss of weight

Rate either ..A" or .. B^{\prime}
A When rating by history:
1 No weight loss Probable weignt loss associated with present illness 2 Definite (according to patient) weight loss
B. Actual weight changes (weekly):

- Less than $1 \mathrm{lb}(0.5 \mathrm{~kg})$ weight loss in one
$-1-2 \mathrm{lb}(0.5-1.0 \mathrm{~kg})$ weight loss in week Greater than $2 \mathrm{lb}(1 \mathrm{~kg})$ weight loss in
week
3 Not assessed

17. Insight

- Acknowiedges being depressed and ill Acknowiedges illness but atributes cause
o bad food. overwork, virus, need for rest. etc.
2 Denies being ill at ail
Kommentar: Die Skala versucht, den Schwe-
regrad einer Depression zu erfiassen. Dafür regrad einer Depression zu erfiassen. Dafur
werden 17 unterpshiedliche Iterns bewertet. Es
andel andelt sich um eine Fremdbewertungsskala.
ie erfordert psychiatrische Vorkenntnisse be ie erfordert psychiatrische vorkenntnisse bei dem Benutzer. Sie ist
deshalb von Bedeutung.

Change in Hamilton score

Treatment arm	Baseline Mean \pm SD	After 4 weeks Mean \pm SD
Hypericum $(\mathrm{N}=42)$	$15,57 \pm 4,10$	$7,10 \pm 3,11$
Placebo $(\mathrm{N}=47)$	$14,96 \pm 4,82$	$10,45 \pm 3,60$
p-value Mann-Whitney U-test	0,531	0,000

Responder $=$ Patient whose Hamilton score after 4 weeks was ≤ 8 or decreased at least 50%

Responder rate

a. 0 Zellen (0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale ewartete Häufigkeit ist 9,44 . b. Wird nur für eine 2×2-Tabelle berechnet
c. Die standardisierte Statistik ist $-3,257$.

Study type: Observational

- Controlled
- Cohort-study
- Case-control-study
- Non-controlled
- Cohort-study
- Cross-sectional study (survey)

Example cohort study (1)

- Study question: What are the causes and risks for cardiovascular disease in USA?
- Participants: Start of the study 1948 with 5209 men and women aged 30 62 years from Framingham (Massachusetts)

Link: http://www.framinghamheartstudy.org/

Example cohort study (2)

- Procedure: Every two years comprehensive medical check and interview about life style
- Results: Identification of the most important risk factors, like hypertension, hypercholesterolemia, smoking, overweight, diabetes

Example case-control study (1)

- Objective: To investigate the association between migraine and stroke in young women
- Participants: 291 women aged 20-44 years with stroke compared with 736 age and hospital matched controls
- Main outcome variable: self reported history of headaches

Example case-control study (2)

Table 2 Adjusted odds ratios* (95\% confidence intervals) for types of stroke associated with personal or family history of migraine

Variable	Ischaemic stroke \dagger		Haemorrhagic stroke \ddagger		All stroke§	
	Odds ratios (95\% CI)	No of cases/ controls	Odds ratios (95\% CI)	No of cases/ controls	Odds ratios (95\% CI)	No of cases/ control
Simple	$\begin{gathered} 2.97 \\ (0.66 \text { to } 13.5) \end{gathered}$	7/9	$\begin{gathered} 1.84 \\ (0.77 \text { to } 4.39) \end{gathered}$	14/15	$\begin{gathered} 2.25 \\ (1.10 \text { to } 4.63) \end{gathered}$	21/23
Classical	$\begin{gathered} 3.81 \\ (1.26 \text { to 11.5) } \end{gathered}$	19/17	$\begin{gathered} 0.86 \\ (0.44 \text { to } 1.67) \end{gathered}$	24/46	$\begin{gathered} 1.62 \\ (0.98 \text { to } 2.67) \end{gathered}$	50/65
Migraine (total)	$\begin{gathered} 3.54 \\ (1.30 \text { to } 9.61) \\ \hline \end{gathered}$	26/26	$\begin{gathered} 1.10 \\ (0.63 \text { to } 1.94) \\ \hline \end{gathered}$	38/61	$\begin{gathered} 1.78 \\ (1.14 \text { to } 2.77) \\ \hline \end{gathered}$	71/88
Family history of migraine§	$\begin{gathered} 4.99 \\ (2.03 \text { to 12.3) } \end{gathered}$	23/26	$\begin{gathered} 2.30 \\ (1.35 \text { to } 3.90) \end{gathered}$	41/50	$\begin{gathered} 2.55 \\ (1.67 \text { to } 3.90) \end{gathered}$	65/76

*Reference group: women with no personal history of migraine.
\dagger Adjusted for high blood pressure, education, smoking categories, family history of migraine (not in §), alcohol consumption, and social class.
\ddagger Adjusted for high blood pressure, body mass index, smoking categories, and family history of migraine (not in §).
§lschaemic, haemorrhagic, and unclassified stroke.

Study protocol

- Main study question, hypotheses
- Including and excluding criteria
- Outcome and explanatory variables
- Study type
- Follow-up, duration
- Statistical analysis methods
- ...

Population and sample

- Population covers the entire group of individuals in whom you are interested.
- Due to size or inaccessibility of population almost always a subset can be investigated: The sample is the subset of individuals that are included in the study.
- Census: the sample consists of all members of the population.

Population and sample

Example

- Sample: 200 patients with hypertension, i.e. sample size $\mathrm{N}=200$.
- When the superiority of drug A is proved (based on sample data), potentially all patients with hypertension (=population) could be prescribed the drug, i.e. the result of sample is generalized to the population (statistical inference).

Statistical inference

- Inference from the (special) sample to the (general) population.
- Prerequisite: Random sample (also called representative sample), i.e. each object has the same chance to be selected for the sample.

Principles of statistical inference

- You want to prove a hypothesis: statistical test (hypotheses refer ever to population!)
- You want to estimate the true value of a parameter: estimation
- The certainty of a statistical result is ever lower than 100\% (except for census)!

Oberservational unit / variable

- Observational unit is the object of a study, e.g. patient, animal, blood sample, ...
- For each object the (for answering the study question relevant) properties have to be defined and measured as variables.

Values of variables

For each object the variable has a characteristic value, e.g.

Variable	Value
Gender	Female
Size	$1,72 \mathrm{~m}$
Weight	69 kg
Number of pregnancies	2
Blood pressure	$120 / 70 \mathrm{mmHg}$
\ldots	\ldots

Types of variable

- Categorical (qualitative)
- Nominal: categories are mutually exclusive and unordered, e.g. gender, eye colour Dichotomous or binary: two categories only, e.g. dead or alive, relapse y / n
- Ordinal: categories are mutually exclusive and ordered, e.g. disease stage, education level, quality of life

Coding

- = (arbitrary) assignment of natural numbers to the categories
- Examples:
- Variable gender: male = 1, female = 2
- Variable histological type: epithelial $=1$, intermediate $=2$, anaplastic $=3$, other $=4$

Definition of categories Example: Lung cancer

- Yes / no
- Epithelial / mesothelial / other / no
- Using the WHO-classification

Table 1.-The 1999 World Health Organization/ntema
 logical Classification of Lung and Pleural Tumours

1 Epithelial Tumou

1.1. Benign
1.1. Papillomas
1.1.1.1. Squam
1.1.1. Squamous cell papilloma

Inverted
1.1.1.2. Glandular papilloma
1.1.1.3. Mixed squamous cell and glandular apilloma .1.2. Adénomas
1.1.2.1. Alveolar adenoma
1.1.2.3. Adenomas of salivary-gland typ

Mucous gland adenoma
Pleomorphic adenoma
Others
1.2.4. Mucinous

2 Preinvasive lesio
1.2.1. Squamous dysplasia/Carcinoma in situ
1.2.2. Atypical adenomatous hyperplasia
1.2.3. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia
1.3. Malignant
V. Squamous cell carcinoma
ariants
1.3.1.1. Papillary
1.3.1.2. Clear cel
1.3.1.3. Small cel
1.3.1.4. Basaloid
1.3.2. Small cell carcinoma
1.3.2.1
1.3.2.1. Combined small cell carcinoma
1.3.3. Adénocarcinoma
1.3.3.2. Papillary
1.3.3.3. Bronchioloalveolar carcinoma
1.3.3.3.1. Non-mucinous (Clara/pneumocyte type II)
1.3.3.3.2. Mucinous
3.3.3. Mixed mucinous and non-mucinous

$$
\begin{aligned}
& \text { or intermediate cell type } \\
& \text { adenocarcinoma with muc }
\end{aligned}
$$

1.3.3.4. Solid adenocarcinoma with mucin
1.3.3.5. Adenocarcinoma with mixed subtypes
1.3.3.6. Variants
1.3.3.6.1. Well-differentiated fetal adenocarcinoma 3.3.6.2. Mucinous ("colloid") adenocarcinoma
.3.3.6.3. Mucinous cystadenocarcinoma
3.3.6.5. Clear cell adernocarcinoma
1.3.4. Large cell carcinoma

Variants
.3.4.1. Large cell neuroendocrine carcinoma
1.3.4.1.1. Combined large cell neuroendocrine carcinoma
1.3.4.2. Lymphoepithelioma-like carcinom 1.3.4.4. Clear cell carcinoma
1.3.4.5. Large cell carcinoma with rhabdoid phenotype
1.3.5. Adenosquamous carcinoma
3.6. Carcinomas with pleomorphic sarcomatous elements
1.3.6.1. Carcinomas with spindle and/or giant cells 1.3.6.1.1. Pleomorphic carcinoma 1.3.6.1.2. Spindle cell carcinoma 1.3.6.1.3. Giant cell carcinoma
1.3.6.2. Carcinosarcoma
3.6.3. Pulmonary blastoma
.3.6.4. Others

Table 1. Continued

1.3.7. Carcinoid tumour
1.3.7.1. Typical carcinoid
1.3.7.2. Atypical carcinoid
1.3.8. Carcinomas of salivary-gland type 1.3.8.2. Adenoid cystic carcinoma 1.3.8.3. Others
1.3.9. Unclassified

Soft Tissue Tumours
2.1 Localized fibrous tumou
2.2 Epithelioid hemangioendothelioma
2.3 Pleuropulmo
2.5 Calcifying fibrous pseudotumour of the pleura
2.6 Congenital peribronchial myofibroblastic tumour
2.7 Diffuse pulmonary lymphangiomatosis
2.8 Desmoplastic small round cell tumour
2.9 Other

Mesothelial Tumour
3.1 Benign
3.1.1 Ade
atoid tumour 3.2.1 Epithel
3.2.2 Sphelioid mesothelioma .2.2 Sarcomatoid mesothelioma 3.23 Biphasic mesotheliomathelioma 3.2.3 Biphasic mesothelioma
3.2.4 Other
4.1 Hamartoma
4.2 Sclerosing hemangioma
4.3 Clear cell tumour
4.4 Germ cell neoplasms
4.4.1 Teratoma, mature or immatur
4.4.2 Malignant germ cell tumour
4.6 Melanoma
4.7 Others

5 Lymphoproliferative Disease
5.1 Lymphoid interstitial pneumonia
5.2 Nodular lymphoid hyperplasia
5.3 Low-grade marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue
6 Secondary Tumours
7 Unclassified Tumours
8 Tumour-like Lesions
8. 1 Tumourlet
.2 Multiple meningothelioid nodule
. 4 Langerhans cell histiocytosis
4 Inflammatory pseudotumour (Inflammatory
5 myofibroblastic tumour)
. 6 Arganizing pneumonia
8.6 Amyloid tumour
8.7 Hyalinizing granuloma
8.8 Lymphangioleiomyomatosis
8.9 Multifocal micronodular pneumocyte hyperplasia
8.11 Bronchial inflammatory polyp
8.12 Others
emerged that would necessitate a change. An example of this is "small-cell lung carcinoma". As compared to the previous edition, changes include a better efinition of pre-invasive lesion, a reclassification of denocarcinom, the types as variants of large cell carcinoma, large cell
neuroendocrine carcinoma (LCNEC) and basaloid

Types of variable

- Numerical (quantitative)
- Counts (discrete): integer values, e.g. number of pregnancies, number of siblings
- Continuous (measured): takes any value in a range of values (interval), e.g. blood pressure in mmHg , weight in kg , thickness in mm, age in years

Purpose of variables

- Identification
- Outcome variable
- Explanatory variable
- Factor (qualitative)
- Covariable (quantitative)
- Confounder

Data recording

- = measuring and documentation of the values of all variables for each object
- Generating a rectangular structure (spreadsheed)
- Important: The measurements at different objects have to be independent (statistical independence)!

Checking data quality

Haarfarbe				
	Häufigkeit	Prozent	Gültige Prozente	Kumulierte Prozente
Gültig hellblond	9	8.4	8,4	8,4
dunkelblond	38	35,5	35,5	43,9
rot/rotblond	4	3,7	3,7	47.7
braun	45	42,1	42,1	89,7
schwarz	9	8.4	8.4	98,1
8	1	. 9	. 9	99,1
keine Haare	1	. 9	. 9	100,0
Gesamt	107	100,0	100,0	

Deskriptive Statistik

	N	Minimum	Maximum	Mittelwert	Standardabw eichung
Größe Gültige Werte (Listenweise)	107	155	1175	180,78	97,376

Frequency

- Absolute frequency = number of occurrence of a value in a sample, e.g. 14 persons have blue eyes.
- Relative frequency = number of occurrence of a value in a sample / sample size, e.g. 14 persons of 57 have blue eyes, i.e. 24,6\%.

A frequency distribution

- describes how the frequencies are distributed on all (in the sample) occurring values.
- Presentation as frequency table or diagram

Frequency table

Haarfarbe

				Gültige Prozente	Kumulierte Prozente
Gültig	hellblond	10	8,5	8,6	8,6
	dunkelblond	45	38,5	38,8	47,4
	rot / rotblond	2	1,7	1,7	49,1
	braun	51	43,6	44,0	93,1
	schwarz	8	6,8	6,9	100,0
	Gesamt	116	99,1	100,0	
Fehlend	System	1	, 9		
Gesamt		117	100,0		

Graphical data presentation

Bar chart

Pie chart

Frequency table

Alter

		Häufigkeit	Prozent	Gültige Prozente	Kumulierte Prozente
Gültig	20,00	4	3,4	3,4	3,4
	21,00	28	23,9	24,1	27,6
	22,00	29	24,8	25,0	52,6
	23,00	20	17,1	17,2	69,8
	24,00	7	6,0	6,0	75,9
	25,00	7	6,0	6,0	81,9
	26,00	9	7,7	7,8	89,7
	27,00	4	3,4	3,4	93,1
	28,00	2	1,7	1,7	94,8
	30,00	2	1,7	1,7	96,6
	32,00	2	1,7	1,7	98,3
	38,00	1	,9	,9	99,1
	41,00	1	,9	,9	100,0
	Gesamt	116	99,1	100,0	
Fehlend	System	1	,9		
Gesamt		117	100,0		

Summarizing measures (parameters)

Central tendency / location
Mean $\quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
Median, quantiles, mode
Variation
Range $=$ maximum - minimum
Variance $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
Standard deviation $\quad s=\sqrt{s^{2}}$
Interquartile distance $=0,75-Q-0,25-Q$

Summarizing measures

Statistiken

		Alter	Größe	Gewicht
N	Gültig	116	117	116
	Fehlend	1	0	1
Mittelwert		23,3621	173,1026	66,6888
Standardabweichung		3,23136	8,55246	12,41771
Varianz		10,442	73,145	154,200
Minimum		20,00	155,00	45,00
Maximum		41,00	200,00	98,70
Perzentile	25	21,0000	165,0000	58,0000
	Median	50	22,0000	173,0000
	75	24,0000	179,0000	75,7500

Graphical data presentation

Histogram

Boxplot

Histogram with density function of normal distribution

Normal distribution (1)

Total area under the curve $=1$ (or 100\%).
Bell shaped and symmetrical about its mean.

The peak of the curve lies above the mean.

Any position along the horizontal axis can be expressed as a number of SDs away from the mean.

The mean and median coincide.

Normal distribution (2)

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Density function of normal distribution with $\mu=3$ and $\sigma=4$

Normal distribution (3)

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

(a) effect of changing mean $\left(\mu_{2}>\mu_{1}\right)$
(b) effect of changing SD $\left(\sigma_{2}>\sigma_{1}\right)$

$\mu_{1} \quad \mu_{2}$

μ

Normal distribution (4)

Normal distribution (5)

Figure 5.9 Normal distribution curve for birthweight with a mean of 3.4 kg and SD of 0.6 kg

Analysis of two variables

- Both variables are qualitative: contingency table
- One variable is qualitative, one variable is quantitative: break-down table
- Both variables are quantitative: scattergram, correlation coefficient

Contingency table

Geschlecht * Haarfarbe Kreuztabelle

		Haarfarbe						Gesamt
		hellblond	dunkelblond	rot / rotblond	braun	schwarz	keine Haare	
Geschlecht männlich	Anzahl	3	17	3	14	6	1	44
	\% von Geschlecht	6,8\%	38,6\%	6,8\%	31,8\%	13,6\%	2,3\%	100,0\%
	\% von Haarfarbe	20,0\%	30,4\%	75,0\%	25,5\%	75,0\%	100,0\%	31,7\%
	\% der Gesamtzahl	2,2\%	12,2\%	2,2\%	10,1\%	4,3\%	,7\%	31,7\%
weiblich	Anzahl	12	39	1	41	2	0	95
	\% von Geschlecht	12,6\%	41,1\%	1,1\%	43,2\%	2,1\%	,0\%	100,0\%
	\% von Haarfarbe	80,0\%	69,6\%	25,0\%	74,5\%	25,0\%	,0\%	68,3\%
	\% der Gesamtzahl	8,6\%	28,1\%	,7\%	29,5\%	1,4\%	,0\%	68,3\%
Gesamt	Anzahl	15	56	4	55	8	1	139
	\% von Geschlecht	10,8\%	40,3\%	2,9\%	39,6\%	5,8\%	,7\%	100,0\%
	\% von Haarfarbe	100,0\%	100,0\%	100,0\%	100,0\%	100,0\%	100,0\%	100,0\%
	\% der Gesamtzahl	10,8\%	40,3\%	2,9\%	39,6\%	5,8\%	,7\%	100,0\%

Break-down table

Deskriptive Statistik

Geschlecht						Standardab weichung
männlich	Alter	44	20,00	30,00	23,0682	2,07306
	Größe	44	170,00	197,00	182,7727	6,30933
	Gewicht	44	58,00	116,00	79,8636	10,91317
	Gültige Werte	44				
	(Listenweise)					
weiblich	Alter	95	19,00	32,00	22,7579	2,77801
	Größe	95	156,00	185,00	168,1474	6,18331
	Gewicht	93	44,00	80,00	59,4516	7,65778
	Gültige Werte	93				
	(Listenweise)					

Scattergram (1)

Scattergram (2)

Korrelationen

		BMI	IMT
BMI	Korrelation nach Pearson	1	$.339^{\pi x}$
	Signifikanz (2-seitig)		, 000
	N	581	580
IMT	Korrelation nach Pearson	$.339^{\times \pi}$	1
	Signifikanz (2-seitig)	, 000	
	N	580	580

**. Die Korrelation ist auf dem Niveau von 0,01 (2seitig) signifikant.

Correlation coefficient (CC)

- If both variables are (nearly) normally distributed you calculate the Pearson CC, else the Spearman CC.

Interpretation of CC

Sign positive: trend is positive Sign negative: trend is negative

Absolute value	Interpretation (rule of thumb)
$0-0,3$	No correlation
$0,3-0,6$	Weak correlation
$0,6-0,8$	Moderate correlation
$>0,8$	Strong correlation

Hypotheses

- Statistical hypothesis = assumption about a circumstance in the population
- Hypotheses are defined using the outcome variable and the clinical meaningfully (relevant) difference.
- Example: The mean reduction of drug A is 20 mmHg and of drug $B 10 \mathrm{mmHg}$, i.e. the clinical meaningfully difference is $20-10=10 \mathrm{mmHg}$

Kind of hypotheses

- Null hypothesis $\mathrm{H}_{0}=$ status quo / no difference / no change / no dependency (converse of the alternative hypothesis)
- Alternative hypothesis H_{1} = possible innovation / issue to be proved (the study hypothesis) / difference / change / dependency (converse of null hypothesis)

Example H_{0}

- Null hypothesis: Drug A and drug B have the same effect, i.e. the mean reduction of blood pressure in the two groups is equal, i.e.
$\mu_{A}=\mu_{B}$, i.e.
$\delta=\mu_{A}-\mu_{B}=0$
$\mu=$ true mean of blood pressure difference

Example H_{1}

- Alternative hypothesis: Drug A and drug B have different effects, i.e. the mean reduction of blood pressure in the two groups is not equal, i.e.
$\mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$, i.e.
$\delta=\mu_{\mathrm{A}}-\mu_{\mathrm{B}} \neq 0$
$\mu=$ true mean of blood pressure difference

One-sided hypotheses

- H_{0} : The mean reduction of blood pressure in group A is lower or equal as in group B, i.e.
$\mu_{A} \leq \mu_{B}$, i.e. $\delta=\mu_{A}-\mu_{B} \leq 0$
- H_{1} : The mean reduction of blood pressure in group A is greater as in group B, i.e. $\mu_{A}>\mu_{B}$, i.e. $\delta=\mu_{A}-\mu_{B}>0$
$\mu=$ true mean of blood pressure difference

Statistical test

- = statistical procedure to confirm or reject the null hypothesis
- The result is called statistically significant, if the null hypothesis is rejected.

Errors with statistical test

Result of test (based on sample data)	Population*	
	H_{1} is true	
Test confirms H_{0}	\checkmark	Type II error
Test rejects H_{0}	Type I error	\checkmark

* We don't really know whether H_{0} is true or false!

Type I error

- = probability of rejecting H_{0} although H_{0} is true.
- The type I error is controlled by the significance level α, i.e. α is the probability of making type I error.
- Usual values for α are $1 \%(0,01), 5 \%$ $(0,05)$ or $10 \%(0,1)$.

Type II error

- = β = probability of confirming H_{0} although H_{0} is false.
- Power = $1-\beta=$ probability of rejecting H_{0} (= obtaining a ,,statistically significant" result) when H_{0} is truly false.

Type II error

- The type II error cannot be controlled because H_{1} cannot be specified.
- Example H_{1} : Drug A and drug B have different effects, i.e. the mean reduction of blood pressure in the two groups is not equal, i.e. $\mu_{A} \neq \mu_{B}$, i.e. $\delta=$ $\mu_{\mathrm{A}}-\mu_{\mathrm{B}} \neq 0$, but the true value of δ is unknown.
$\mu=$ true mean of blood pressure difference

Decision

- Comparison of p-value with the significance level α :
- If $p>\alpha$: confirmation of H_{0}
- If $\mathrm{p} \leq \alpha$: rejection of H_{0}
- When you perform a statistical test with statistical software, the p-value will be calculated and printed.

General procedure

- Definition of outcome variable and hypotheses
- Choice of significance level
- Choice of appropriate test
- Performing the test with data
- Reading off the p-value and decision
- Interpretation of result

Example 1

- Does drug A reduce the systolic blood pressure for patients with hypertension?
- The average reduction of blood pressure by drug A is 10 mmHg .

Example 1: data structure

Variable

ID	Gender	Age	Size	Weight	SBP before	SBP after
1	m	63	180	93,0	160	140
2	m	72	183	79,7	150	145
3	f	83	165	78,0	170	172
4	m	74	175	90,5	160	130
5	m	52	176	72,4	190	180
6	f	61	165	64,0	150	155
7	f	71	173	83,0	165	145
8	m	79	180	92,3	185	175
9	m	65	177	66,5	170	175
10

Example 1: hypotheses

- H_{0} : „The mean of systolic blood pressure before and after treatment is equal." H_{1} : „The mean of systolic blood pressure before and after treatment is not equal."
- $\mu=$ true mean of blood pressure
- $\mathrm{H}_{0}: \mu_{\text {before }}=\mu_{\text {after }} \mathrm{H}_{1}: \mu_{\text {before }} \neq \mu_{\text {after }}$ oder
$H_{0}: \mu_{\text {before }}-\mu_{\text {after }}=0$,
$\mathrm{H}_{1}: \mu_{\text {before }}-\mu_{\text {after }} \neq 0$

Example 1: t-test for paired samples

Statistik bei gepaarten Stichproben

				Standardabw eichung	Standardfehle r des Mittelwertes
Paaren 1	Blutdruckvor	162,81	400	17,405	, 870
	Blutdruck nach	154,56	400	18,918	, 946

Test bei gepaarten Stichproben

Mean of blood pressure difference
p-value
Decision: $p<0,05 \Rightarrow H_{0}$ is rejected

Example 1: Wilcoxon signed rank test

Example 2

- There are differences between drug A and B in reducing the systolic blood pressure for patients with hypertension?
- The average reduction of blood pressure by drug A is 10 mmHg , by drug B 15 mmHg .

Example 2: data structure

ID	Treatment group	Gender	Age	Size	Weight	Systolic blood pressure before	Systolic blood pressure after	Difference
1	A	f	63	180	93,0	160	140	20
2	A	m	72	183	79,7	150	145	5
3	A	f	83	165	78,0	170	172	-2
...	\ldots
61	B	f	61	165	64,0	150	155	-5
62	B	f	71	173	83,0	165	145	20
63	B	m	79	180	92,3	185	175	10
...	...	\ldots	...	\ldots	\ldots	\ldots

Example 2: hypotheses

- H_{0} : „The mean of blood pressure difference in both groups is equal." H_{1} : „The mean of blood pressure difference in both groups is not equal. "
- $\mu=$ true mean of blood pressure difference
- $\mathrm{H}_{0}: \mu_{\text {group } \mathrm{A}}=\mu_{\text {group } \mathrm{B}}$
$\mathrm{H}_{1}: \mu_{\text {group } A} \neq \mu_{\text {group } B}$

Example 2: t-test for independent samples

	Gruppenstatistiken				
	Behandlungsgruppe	N	Mittelwert	Standardabw eichung	Standardfehle r des Mittelwertes
Blutdruckdifferenz vor-	Medikament A	200	8,3890	6,93480	.49036
nach	Medikament B	200	8,1142	6,99578	.49468

Test bei unabhängigen Stichproben

Test bei unabhängigen Stichproben										
		Levene-Test der Varianzgleichheit		T-Test für die Mittelwertgleichheit						
		F	Signifikanz	T	df	Sig. (2-seitic)	Mittlere Differenz	Standardfehle r der Differenz	95\% Konfidenzintervall der Differenz	
									Untere	Obere
Blutdruckdifferenz vor-	Varianzen sind gleich	, 001	. 980	. 395	398	. 693	. 27480	,69654	-1,09455	1,64415
	Varianzen sind nicht gleich			. 395	397,969	. 693	. 27480	, 69654	-1,09455	1,64415

p-value

Decision: $p>0,05 \Rightarrow H_{0}$ is confirmed

Example 3: hypotheses

- Comparison of bone density in mice administrated with three different vitamin D concentrations
- $\mu=$ true mean of bone density
- $\mathrm{H}_{0}: \mu_{\text {dietgroup } 1}=\mu_{\text {dietgroup2 }}=\mu_{\text {dietgroup3 }}$
$\mathrm{H}_{1}: \mu_{\text {dietgroup } 1} \neq \mu_{\text {dietgroup2 } 2}$ or
$\mu_{\text {dietgroup } 1} \neq \mu_{\text {dietgroup3 }}$ or
$\mu_{\text {dietgroup } 2} \neq \mu_{\text {dietgroup } 3}$

Example 3: oneway analysis of variance

ONEWAY deskriptive Statistiken

ONEWAY ANOVA

Post-Hoc-Tests

Bonferroni correction	Mehrfachvergleiche \quad-values single						
	(1) Diätgruppe	(J) Diätgruppe	$\begin{gathered} \text { Mittlere } \\ \text { Differenz (l-J) } \end{gathered}$	Standardfehle r	Signifikanz	95\%-Konfidenzintervall	
						Untergrenze	Obergrenze
	100 IE Vit Dikg food	600 IE Vit Dikg food	-.01796	. 01266	. 477	-.,0487	. 0128
		24001 EVit Dikg food	-.11847*	. 01221	. 000	- -1482	-.0888
	600 IE Vit Dikg food	100 IE Vit Dikg food	. 01796	. 01266	. 477	-.0128	. 0487
		240015 Vit Dikg food	-, 10051 ${ }^{\text {² }}$. 01202	. 000	-.1297	-.0713
	24001 E Vit Dikg food	100 IE Vit Dikg food	.11847*	. 01221	, 000	. 0888	. 1482
		600 IE Vit Dikg food	. $10051^{\text { }}$. 01202	. 000	. 0713	. 1297

*. Die Differenz der Mittelwerte ist auf dem Niveau 0.05 signifikant.

Example 4

- Which treatment of varicosis* (stripping or ELT) is better?
- The infection rate of ELT is 3% and of stripping 15%.
* Varicose veins (commonly on the leg) are veins that have become enlarged and tortuous, because the leaflet valves to prevent blood from flowing backwards are insufficient.

Example 4: hypotheses

- H_{0} : „Infection rate and OP-method are independent."
H_{1} : „Infection rate and OP-method are dependent."
- H_{0} : P(Infection|OP1)=P(Infection|OP2) $\mathrm{H}_{1}: \mathrm{P}($ Infection $\mid \mathrm{OP} 1) \neq \mathrm{P}($ Infection $\mid \mathrm{OP} 2)$

OP1=ELT, OP2=Stripping
$\mathrm{P}($ Infection $\mid \mathrm{OP} 1)=$ (conditional) probability, that an infection occurs, if OP-method 1 was applied

Chi-squared test (χ^{2} test)

- is a (non-parametric) test for categorical outcome variables resp. for dependencies in contingency tables (comparison of proportions).
- Requirement: the cell counts may not be to small, otherwise the Fisher exact test may be used.

Example 4: chi-squared test (1)

OP *Infektion Kreuztabelle					
			Infektion		

Chi-Quadrat-Tests

	Wert	df	Asymptotisch e Signifikanz (2-seitig)	$\begin{gathered} \text { Exakte } \\ \begin{array}{c} \text { Signifikanz (2- } \\ \text { seitig) } \end{array} \end{gathered}$	Exakte Signifikanz (1seitig)
Chi-Quadrat nach Pearson	. $112^{\text {a }}$	1	. 738	. 814	,416
Kontinuitätskorrektur ${ }^{\text {b }}$. 047	1	. 828		
Likelihood-Quotient	. 112	1	. 738	. 814	. 416
Exakter Test nach Fisher				. 814	. 416
Zusammenhang linear-mit-linear	. 112°	1	. 738	. 814	. 416
Anzahl der gültigen Fälle	558				

a. 0 Zellen (,0\%) haben eine enwartete Häufigkeit kleiner 5. Die minimale ewwartete Häufigkeit ist 37,42.
b. Wird nur für eine 2×2-Tabelle berechnet
c. Die standardisierte Statistik ist, 334 .

Example 4: chi-squared test (2)

OP * Infektion Kreuztabelle					
			Infektion		

Chi-Quadrat-Tests

	Wert	df	Asymptotisch e Signifikanz (2-seitig)	$\begin{gathered} \text { Exakte } \\ \text { Signifikanz (2- } \\ \text { seitig) } \end{gathered}$	$\begin{aligned} & \text { Exakte } \\ & \text { Signifikanz (1- } \\ & \text { Seitig) } \end{aligned}$
Chi-Quadrat nach Pearson	$8,237^{\text {a }}$	1	. 004	,005	,003
Kontinuitätskorrektur ${ }^{\text {b }}$	7,498	1	, 006		
Likelihood-Quotient	8,691	1	,003	,004	,003
Exakter Test nach Fisher				,004	, 003
Zusammenhang linear-mit-linear	$8,222^{\circ}$	1	,004	,005	,003
Anzahl der gültigen Fälle	539				

a. 0 Zellen (0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 27,88 .
b. Wird nur für eine 2×2-Tabelle berechnet
c. Die standardisierte Statistik ist 2,867 .

General procedure

- Definition of outcome variable and hypotheses
- Choice of significance level
- Choice of appropriate test
- Performing the test with data
- Reading off the p-value and decision
- Interpretation of result

The choice of statistical test depends on

- Type and distribution of outcome variable
- Kind of hypothesis
- Number of groups
- Paired (related) or independent samples

Tests for comparing two or more groups of continuous data

	Outcome variable is normal distributed (parametric tests)	Outcome variable is not normal distributed (non-parametric tests)
Two independent groups	t-test for independent samples	Mann-Whitney U test
Two dependent groups	t-test for dependent (paired) samples	Wilcoxon signed rank test, sign test
Three and more independent groups	Analysis of variance for independent samples	Kruskal-Wallis test
Three and more dependent groups	Analysis of variance for dependent samples (repeated measurements)	Friedman test

Normal distribution check

- Comparing mean and median
- Interpretation of skewness
- Diagram (histogram, boxplot)
- Kolmogorov-Smirnov test

Example (1)

- Outcome variable is continuous and (approximately) normal distributed
- $H_{0}: \mu_{A}=\mu_{B}$ i.e. comparing means
- Two independent groups
- Appropriate statistical test: t-test for independent samples

Example (2)

- Explanatory and outcome variable are dichotomous
- H_{0} : Therapy and outcome variable are independent, i.e. comparing rates / proportions
- Appropriate statistical test: Chi-squared test

Parameter estimation

- Inference from the value of a parameter (summarizing measure based on data) to the (unknown) value in the population

A confidence interval (CI)

- consists of a lower and upper limit and describes the precision of estimation.
- The limits of CI include the true (but unknown) parameter value with a fixed confidence probability, e.g. 95\%.
- The limits are calculated from data.
- Parameters are e.g. mean, odds ratio, correlation coefficient

Example CI

Test bei gepaarten Stichproben

Mean of blood pressure difference

$$
U G=\bar{x}-\frac{t_{n-1 ; 0,975} \cdot s}{\sqrt{n}} \quad O G=\bar{x}+\frac{t_{n-1 ; 0,975} \cdot s}{\sqrt{n}}
$$

Using CI for statistical test

- If H_{0} has the form "Parameter has a defined value (e.g. $\mu=0$)", one may perform a test by checking whether the CI for the parameter contains the defined value:
- If the CI contains the defined value, H_{0} will be confirmed.
- If the CI does not contain the defined value, H_{0} will be rejected.

Test using CI: example 1

 H_{0} : true mean of blood pressure difference $=0$Test bei gepaarten Stichproben

The $95 \%-\mathrm{KI}$ for the true mean of blood pressure difference does not contain the value 0 , i.e. the nullhypothesis $\mu=0$ is rejected at a significance level of 5%.

Test using CI: example 2

 H_{0} : true odds ratio = 1| Täglicher
 Alkoholkonsum | Ösophagus-
 Karzinom ja | Ösophagus-
 Karzinom nein |
| ---: | :---: | :---: |
| $\geq 80 \mathrm{~g}$ | 96 | 109 |
| $<80 \mathrm{~g}$ | 104 | 666 |
| Gesamt | 200 | 775 |

Odds ratio: $O R=\frac{96 \cdot 666}{104 \cdot 109}=5,64 \quad$ 95\%-KI: $[4,0 ; 7,95]$
The CI does not contain the value 1, i.e. a daily intake of more than 80 g alcohol is a statistically significant risk for esophageal carcinoma!

CI versus test

- A statistical test provides a decision pro or contra H_{0}, i.e. "Is there a statistically significant difference or not?"
- A CI provides a test decision and additionally information about the size of the difference!

Interpretation of statistical significance

- The number of tests affects the level of significance.
- If the sample size is very large, small differences may become significant.
- Significant results are not obvious clinically relevant.
- Significant results do not prove necessarily a causal correlation.

