Bicuspid Aortopathy - to replace or not to?
<table>
<thead>
<tr>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have received (a) research grant(s) / in kind support</td>
<td>I have been a speaker or participant in accredited CME/CPD ...</td>
<td>I have been a consultant / strategic advisor etc. ...</td>
<td>I am a holder of (a) patent / shares / stocks or ownership...</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>... from current sponsor(s)</td>
<td>... from current sponsor(s)</td>
<td>... for current sponsor(s)</td>
<td>... related to presentation</td>
</tr>
<tr>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>... from any institution</td>
<td>... from any institution</td>
<td>... for any institution</td>
<td>... not related to presentation</td>
</tr>
<tr>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

SCORE: 1234
Agenda

I. Status quo (5‘)
II. Evidence (10’)
III. Guidelines (5‘)
IV. New risk markers (10‘)
I. Status quo

- Case Scenario

La pratica deve essere edificata sopra la buona teorica
(Practice must always be founded on sound theory)
Leonardo Da Vinci
I. Clinical Scenario

- 62 y/o male, NYHA II, FH: positive for BAV, one unclear sudden death, CVRF: arterial hypertension
- Bicuspid combined valvular dysfunction with leading stenotic component (4 m/sec)
- Valve Type: one Raphe, fused left-right coronary cusps
- Root Geometry: unbalanced (150 degrees)
- Sinotubular definition
- Aortic annulus: elliptical, max. 29mm – Aortic root: 42mm, Ascending Aorta: 45mm, rate last 2 years: 1mm/year

What to do with the ascending aorta?
Fictional patient – real attendings
I. Clinical Scenario

Attending Surgeon 1
- Thickness of ascending aortic tissue?
- Reduction Plasty

Attending Surgeon 2
- Modified Bentall / CVG

Attending Surgeon 3
- Leave aorta alone, no indication

Attending Surgeon 4
- Leave root alone
- Wheat procedure

➢ Surgeon preference
➢ Tissue „quality“ characteristics?
II. Evidence

- Bicuspid Aortopathy
- Aortopathy Clusters

"la pratica dev’ essere edificata sopra la buona teorica
(Practice must always be founded on sound theory)
Leonardo Da Vinci"
Ascending Aorta – dilated or not?

Upper normal diameter based on patient age:
D (mm) = 31 + 0.16 \times \text{age (years)}

For extreme BMI:
D (mm) = 21 + 0.14 \times \text{age (years)} + (0.41 \times \text{BMI})

20 y/o average 27mm, 34 still “normal”
80 y/o average 37mm, 44 still “normal”

50% increase in Diameter
Ectasia-Aneurysm
20 y/o – 40mm
40 y/o – 45mm
60 y/o – 50mm
80 y/o – 55mm

Ascending Aorta – growth, but how fast?

Bicuspid Aortopathy

The aortopathy of bicuspid aortic valve disease has distinctive patterns and usually involves the transverse aortic arch

Shafie S. Fazel, MD, PhD, a Hari R. Mallidi, MD, a Richard S. Lee, MD, a Michael P. Sheehan, MSN, RN, FNP,a David Liang, MD, PhD, c Dominik Fleischman, MD, b Robert Herfkens, MD, b R. Scott Mitchell, MD, a and D. Craig Miller, MD a

N= 64 BAV patients
CTA or MRA of thoracic aorta
 • Aortoventricular junction
 • Sinuses of Valsalva
 • Sinotubular junction
 • Tubular ascending aorta
 • Proximal to innominate artery
 • Distal to innominate artery
 • Proximal to LSCA
 • Distal to LSCA
 • Proximal descending aorta

Bicuspid Aortopathy – related to valve type?

III. Guidelines

la pratica dev' essere edificata sopra la buona teorica
(Practice must always be founded on sound theory)
Leonardo Da Vinci
III. Guidelines

Decision in aortic diameters **50-55mm** based on
- Patient age
- Body size
- Comorbidities
- Type of surgery
- Risk factors:
 - Family history
 - Hypertension
 - Coarctation
 - Rapid growth > 2mm/year

Aortic diameters $\geq 55\text{mm}$ surgery should be performed irrespective of valve function

In cases of BAV, surgery of the ascending aorta is indicated in case of:

- **aortic root** or ascending aortic diameter >55 mm.
- aortic root or ascending aortic diameter >50 mm in the presence of other risk factors.
- aortic root or ascending aortic diameter >45 mm when surgical aortic valve replacement is scheduled.

I. Back to Clinical Scenario

- 62 y/o male, NYHA II, FH: positive BAV, one unclear sudden death, CVRF: arterial hypertension
- Bicuspid combined valvular dysfunction with leading stenotic component (4 m/sec)
- Valve Type: One Raphe, fused left-right coronary cusps
- Root Geometry: unbalanced (150 degrees)
- Sinotubular definition
- Aortic annulus: elliptical, max. 29mm – Aortic root: 42mm, Ascending Aorta: 45mm, rate last 2 years: 1mm/year

- Valvular indication: ascending aorta indicated
- Without valvular indication: ascending indicated (risk factors)
- With or without valvular indication: root not indicated (?)
IV. New Markers
- Serum Enzyme Ratios
- Biomechanics
IV. New Markers: Serum Enzyme Ratios

- MMP serum levels not related to aneurysm size
- Different MMP / TIMP ratios in aneurysms of different sizes

IV. New Markers: Serum Enzyme Ratios

IV. Biomechanics: Flow Patterns

IV. Biomechanics - WSS

IV. Biomechanics: Flow Patterns

- Normalized displacement of flow from vessel center
- 25 patients, no significant valve dysfunction, F-U 4.5 years
- Faster aortic growth in pts with displaced flow

IV. Biomechanics - Geometry

- Angle LV/aorta significantly larger in the R/L group than in the R/N group
- LV/aorta angle indicator of indexed aortic diameter
- Angle LV/aorta and angle jet/aorta predictive of mid-ascending phenotype

Take Home Messages

- Diameters + Growth rate + Risk factors
- All guidelines: level of evidence C
- No differentiation between root / ascending aorta
- Serum Enzyme Ratios
- Biomechanics: Flow patterns, shear stress, root geometry, valve type
Bicuspid Aortopathy - to replace or not to?

Dr. Fabian A. Kari
Universitäts-Herzzentrum Freiburg-Bad Krozingen
Klinik für Herz- und Gefäßchirurgie
Stress – MMP2/TIMP1-4 - Stiffness

Hypotheses

- Stretch regulates MMP-2 activity and TIMP-1-4 protein levels in ascending aortic tissue
- Modulation of MMP-2 activity in human and murine *ex vivo* tissue is sufficient to alter tissue stiffness and regulate TIMP-1-4 protein expression
- TIMP-1-4 are released from aortic tissue and their serum levels are related to aortic mechanical properties

Dr. Anke Tscheuschler
Postdoctoral Research Fellow
Institution: Department of Cardiovascular Surgery
University Heart Centre Freiburg · Bad Krozingen (UHZ), Freiburg, Germany

Dr. Remi Peyronnet
Head of Cell Biophysics
Institution: Institute for Experimental Cardiovascular Medicine (IEKM)
University Heart Centre Freiburg Bad Krozingen (UHZ), Freiburg, Germany
IV. New Markers: Serum Enzyme Ratios

III. Guidelines

III. Guidelines