Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Practice must always be founded on sound theory.

Leonardo Da Vinci
I declare for the last 3 years and the subsequent 12 month the following conflicts of interests:

Section I: Support for Research Activities
- grant of the DEGUM
- no other financial research support

Section II: Support for Educational Activities
- MIFO, GE Healthcare, Astra Zeneca, Servier, Novartis, Berlin-Chemie, Pfizer, Cardiac Dimension, Abbott, Bayer, Kelcon

Section III: Honorarium for Promotional Activities
- none

Section IV: Personal Financial Interests in Vommercial Activities
- none

IB1; 2A11
Member of the German Society of Cardiology,
The German Society of Ultrasound, the German Society of Internal Medicine and the European Society of Cardiology/Cardiovascular Imaging
Councillor of the EACVI Board
Echocardiographic Visualization of the Aortic Valve

1. Documentation of the aortic valve is possible in multiple views
 • parasternal
 • apical (using long axis view and 5-chamber view)
 • subcostal
 • suprasternal

2. Using M-Mode the profile of cusp separation is quadrangular-shaped during systole.

3. The Doppler-spectra of the forward transvalvular flow is monophasic during systole

4. Diastolic color jets into the left ventricle describe regurgitant flow.

5. Systolic turbulences into the ascending aorta describe stenotic flow.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Standardized transthoracic examination in echocardiography

- Characterization of left parasternal long axis via the following structures:
 1. the free right ventricular wall,
 2. a section of the right ventricular outflow tract (RVOT),
 3. the basal and central anteroseptal region of the left ventricle,
 4. the left ventricular cavity in the longitudinal section (LV),
 5. the basal and central posterior region of the left ventricle,
 6. the mitral valve (MV) sliced in the center of the valve plane,
 7. the aortic valve (AV) sliced in the center of the valve plane,
 8. the longitudinally intersected initial portion of the aortic root and the ascending aorta (Ao),
 9. a longitudinal section of the left atrium (LA),
 10. a cross section of the descending aorta.
Standardized transthoracic examination in echocardiography

- the parasternal short axis at the level of the aortic valve: conventional 2D-image
- The commissures of the aortic cusps form the „Mercedes-like star during diastole
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Standardized transthoracic examination in echocardiography - M-Mode-Sweep using parasternal short axis -
Characterization of apical long axis view via the following structures:
1. the free right ventricular wall,
2. a section of the right ventricular outflow tract (RVOT),
3. the complete, i.e., basal, central, and apical anteroseptal region of the left ventricle,
4. the left ventricular cavity in the longitudinal section (LV),
5. the complete, i.e., basal, central, and apical posterior region of the left ventricle,
6. the mitral valve (MV) sliced in the center of the valve plane,
7. the aortic valve (AV) sliced in the center of the valve plane,
8. the longitudinally intersected initial portion of the aortic root and the ascending aorta (Ao),
9. a longitudinal section of the left atrium (LA),
10. a cross section of the descending aorta.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Standardized transthoracic examination in echocardiography - the pulsed wave Doppler spectrum in the LVOT or at the aortic valve -

The sample volume of the pulsed wave Doppler has to be positioned about 5mm in front of the aortic annulus in the left ventricular outflow tract.

In the presence of turbulences at the aortic valve a continuous-wave Doppler-spectrum through the aortic valve has to be documented.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Standardized transthoracic examination in echocardiography - the less important 5-chamber view -

The 5-chamber view can be used for the visualization of the central jet stream of stenotic or regurgitant turbulences. If the flow phenomena can be well analyzed using the continuous wave Doppler, this view is helpful. Using the pulsed wave Doppler in the LVOT this view has to be avoided because of insufficient standardization of the position of the sample volume.
The quality of a pw-spectrum can be checked by the contours of the signal, because maximum velocities depicted with optimal Doppler angulation will show sharp contours.

A “bad“ pw-spectrum does not show any contour, because Doppler angulation is oblique to the flow velocities. In this case maximum velocities will not be documented.
Conclusion:
It has to be standard, to use the apical long axis view for positioning of the sample volume during pw-Doppler in the LVOT.

In the 5-chamber view the position of the sample volume can not be controlled in relation to the aortic annulus.

Only in the apical long axis view a direct visual control of the positioning of the sample volume in relation to the aortic annulus (profile view) in the LVOT is possible.
Echocardiographic diagnostics of aortic valvular diseases
Use the best acoustic window.

In this case of an aortic stenosis the best acoustic window for documenting the stenotic flow is the right parasternal or suprasternal acoustic window.

Beispiel: Aortenstenose

Performing flow measurements always the maximum velocities are correct.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease)

Patrizio Lancellotti (Chair)1,8, Christophe Tribouilloy2, Andreas Hagendorff3, Luis Moura4, Bogdan A. Popescu5, Eustachio Agricola6, Jean-Luc Monin7, Luc A. Pierard1, Luigi Badano8, and Jose L. Zamorano9 on behalf of the European Association of Echocardiography
Analysis of the aortic regurgitation

1. Description of the morphology of the cavities – mainly of the left ventricle and the aortic root
2. Assessment of left ventricular function
3. Target parameter 1: regurgitant fraction
4. Target parameter 2: planimetry of the effective regurgitant orifice
5. Assessment of qualitative and semiquantitative parameter
6. Secondary structural and functional data
7. Special investigations, e.g. TEE and stress

LV- and LA-dilatation; Reduced LV-function – if significant aortic regurgitation is present.

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Monoplane analysis is not sufficient.

Preserved or slightly reduced LV function in the presence of a moderate aortic regurgitation

Biplane determination of systolic function by Simpson analysis should be mandatory in VHD.

The 2D-based biplane summation method of disc is the recommended approach for the estimation of LV volumes and ejection fraction.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Table 1: Functional classification of AR lesions

<table>
<thead>
<tr>
<th>Dysfunction</th>
<th>Echo findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: enlargement of the aortic root with normal cusps</td>
<td>Dilatation of any components of the aortic root (aortic annulus, sinuses of Valsalva, sinotubular junction)</td>
</tr>
<tr>
<td>Iia: cusp prolapse with eccentric AR jet</td>
<td>Complete eversion of a cusp into the LVOT in long-axis views</td>
</tr>
<tr>
<td>Cusp flail</td>
<td>Distal part of a cusp prolapsing into the LVOT (clear bending of the cusp body on long-axis views and presence of a small circular structure near the cusp free edge on short-axis views)</td>
</tr>
<tr>
<td>Partial cusp prolapse</td>
<td>Free edge of a cusp overriding the plane of aortic annulus with billowing of the entire cusp body into the LVOT (presence of a large circular or oval structure immediately beneath the valve on short-axis views)</td>
</tr>
<tr>
<td>Whole cusp prolapse</td>
<td>Presence of an eccentric AR jet without definite evidence of cusp prolapse</td>
</tr>
<tr>
<td>Iib: free edge fenestration with eccentric AR jet</td>
<td>Thickened and rigid valves with reduced motion</td>
</tr>
<tr>
<td>III: poor cusp quality or quantity</td>
<td>Tissue destruction (endocarditis)</td>
</tr>
<tr>
<td></td>
<td>Large calcification spots/extensive calcifications of all cusps interfering with cusp motion</td>
</tr>
</tbody>
</table>

Figure 5: Measurements of the aortic diameters. 1, valve annulus; 2, aortic sinuses; 3, sinotubular junction; 4, proximal ascending aorta.

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Key point
In patients with AR, careful aortic valve analysis is mandatory. The echo report should include information about the aetiology, the lesion process, and the type of dysfunction. The likelihood of valve repair should also be discussed in the case of pure AR.

Key point
Additional echo findings are used as complementary findings to assess the severity of AR. The assessment of the morphology and dimension of the aortic root is mandatory.

Indirect sequela of the valvular lesion: Increased sPAP

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Functional Anatomy of Aortic Regurgitation: Echocardiography

What are the prerequisites to successful aortic valve repair?

• To have a substantial understanding of the mechanisms of aortic valve dysfunction
 • Normal or increased cusp motion
 • Poor cusp quality or quantity
• To understand the anatomical features associated with post-operative results
 • Increased risk of reoperation after AV repair in Marfan pts and Type 3 AR (restrictive type)
 • Impact of cuspal configuration (bicuspid higher risk than tricuspid)
 • Impact of pericardial pathing (due to calcification)
 • Impact of commissural orientation (< 160° higher risk than > 160°)
 • Impact of anular size (> 29mm higher risk than < 29mm)
Aortic Root Anatomy
(A) Diagram of aortic root anatomy showing coronet shape and location of various annular planes and coronary ostia relative to leaflet attachments.
(B) Imaging planes and leaflet attachments from (A) shown superimposed on postmortem specimen.
A-M aorto-mitral; VA ventriculo-arterial.

The anatomy of the aortic valve and the aortic root is complex. It can be better visualized multidimensional than in a two-dimensional images.
The aortic root: structure, function, and surgical reconstruction

M J Underwood, G El Khoury, D Deronck, D Glineur, R Dion

Figure 1 Diagrammatical representation of the aortic root: (a) sinotubular junction; (b) basal ring (surgical annulus); (c) the sinuses of Valsalva.

Figure 2 Diagrammatic representation of the aortic root opened longitudinally through the left coronary sinus, demonstrating the interleaflet triangles (a) and the valve leaflets (b).
Transesophageal Echocardiographic Evaluation During Aortic Valve Repair Surgery

(Anesth Analg 2010;111:59–70)

Michel J. Van Dyck, MD,* Christine Watremez, MD,* Munir Boodhwani, MD, MMSc,† Jean-Louis Vanoverschelde, MD, PhD,‡ and Gebrine El Khoury, MD†

Figure 1. Diagram of the aortic root. The 2 borders of the root are drawn: the sinotubular junction and the ventriculoaortic junction. The basal attachment of the aortic cusps forms the basal ring and is also often described as the “aortic annulus.” Inset: The crown-like shape of the valve attachments determines the presence of 3 interleaflet triangles. (Modified from Sutton et al.,36 with permission.)

according to Van Dyck et al., Anest Analg 2010; 111:59-70
In transthoracic echocardiography the correct sectional plane to measure the effective and geometric height can only achieved for the right coronary cusp, because the left and noncoronary cusp cannot be visualized in the correct sectional plane. Thus, the sectional planes of all cusps during diastole should be visualized by postprocessing in 3D-data sets.

The same problem is existent for TEE-imaging.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Righ coronary cusp
Non coronary cusp
Left coronary cusp
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Diastole

1 = diameter at the level of the tpis of the „crown-like“ ring

2 = diameter at the level of the „hinge points“

Systole

4 = coaptation-length

3 = effective height

5 and 6 = geometric heights of the cusps

- Really visualized only for the right coronary cusp
Analysis of Aortic Valve: Cusp Movement and Calcification

The degree of mobility of the aortic valve:
- Grade 1 describes normal motion of the cusps
- Grade 2 describes excess motion of the cusps
- Grade 3 describes restrictive motion of the cusps

The degree of calcification of the aortic valve:
- Grade 1 describes no calcification
- Grade 2 describes isolated spots of calcification
- Grade 3 is characterized by large echogeneities due to calcification interfering with the motion of the cusps
- Grade 4 presents extensive calcification of all cusps with restriction of the cusp motion

e.g. restrictive motion of the cusps and grade 3 calcification
Analysis of Aortic Valve: Cusp Fusion and Fusion Orientation

In patients with bicuspid aortic valve it is important to describe the cusp fusion.

- Type 1 is the right-left coronary cusp fusion
- Type 2 is the right-noncoronary cusp fusion
- Type 3 is the left-noncoronary cusp fusion

Examples of type 1 fusion with a 180° fusion orientation
A. small raphe
B. Calcification with stenotic compound
Analysis of Aortic Valve: Number of Cusps and Cusp Configuration

uni-cuspid

normal = tri-cuspid

bi-cuspid

quadri-cuspid
Anatomy of Aortic Regurgitation

- Proximal aortic dilatation
 - Normally central regurgitation
- Cusp thickening or cusp restriction
 - Fusion/raphe in BAV
 - Degenerative disease
 - Rheumatic disease
 - Often combined with aortic stenosis
- Cusp destruction
 - Endocarditis
 - Trauma
- Cusp prolapse
 - Anulus or aortic root dilatation
 - Dissection
 - Normally excentric regurgitation
Pathophysiology of Chronic Aortic Regurgitation

- **Primary volume overload**
 - Primarily increased preload
 - Later increased afterload
- **Progressive ventricular dilatation**
 - Chamber compliance increases due to the increase of total stroke volume
 - Only mild increase of intracavitary pressure
 - Later – if LV is severely enlarged – significant increase of intracavitary pressure
- **Myocardial hypertrophy**
 - Compensation for the increase of wall stress for maintainance of LV function
Grading of Aortic Regurgitation by Echocardiography

- **Qualitative**
 - Aortic valve morphology
 - Color flow AR-jet
 - cw-Doppler AR-signal
 - Diastolic flow reversal in the thoracic arteries

- **Semiquantitative**
 - Vena contracta jet width
 - Regurgitant orifice area

- **Quantitative**
 - Volume calculations by Doppler echocardiography
 - Regurgitant volume and regurgitant orifice calculations by PISA method
Table 4. Qualitative and quantitative parameters useful in grading aortic regurgitation severity.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV size</td>
<td>Normal*</td>
<td>Normal or dilated</td>
<td>Usually dilated†</td>
</tr>
<tr>
<td>Aortic leaflets</td>
<td>Normal or abnormal</td>
<td>Normal or abnormal</td>
<td>Abnormal/flail, or wide coaptation defect</td>
</tr>
<tr>
<td>Doppler parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet width in LVOT — color flow‡</td>
<td>Small in central jets</td>
<td>Intermediate</td>
<td>Large in central jets; variable in eccentric jets</td>
</tr>
<tr>
<td>Jet density — CW</td>
<td>Incomplete or faint</td>
<td>Dense</td>
<td>Dense</td>
</tr>
<tr>
<td>Jet deceleration rate — CW (PHT, ms)§</td>
<td>Slow >500</td>
<td>Medium 500—200</td>
<td>Steep <200</td>
</tr>
<tr>
<td>Diastolic flow reversal in descending aorta — PW</td>
<td>Brief, early diastolic</td>
<td>Intermediate</td>
<td>Prominent holodiastolic reversal</td>
</tr>
<tr>
<td></td>
<td>reversal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC width, cm‡</td>
<td><0.3</td>
<td>0.3—0.60</td>
<td>>0.6</td>
</tr>
<tr>
<td>Jet width/LVOT width, %‡</td>
<td><25</td>
<td>25–45</td>
<td>≥65</td>
</tr>
<tr>
<td>Jet CSA/LVOT CSA, %‡</td>
<td><5</td>
<td>5–20</td>
<td>≥60</td>
</tr>
<tr>
<td>R Vol, ml/beat</td>
<td><30</td>
<td>30–44</td>
<td>≥60</td>
</tr>
<tr>
<td>RF, %</td>
<td><30</td>
<td>30–39</td>
<td>≥50</td>
</tr>
<tr>
<td>EROA, cm²</td>
<td><0.10</td>
<td>0.10–0.19</td>
<td>0.20–0.29</td>
</tr>
</tbody>
</table>
Special Aspects of Echocardiographic Assessment of the Severity of AR:
It is not allowed to estimate severity according to the size of the jet area.

Key point
The colour flow area of the regurgitant jet is not recommended to quantify the severity of AR. The colour flow imaging should only be used for a visual assessment of AR. A more quantitative approach is required when more than a small central AR jet is observed.

Estimation of the severity of valvular regurgitation: recommendations

(1) The colour flow area of the regurgitant jet is not recommended to quantify the severity of valvular regurgitation.

(2) Both the vena contracta measurement and the PISA method are the recommended approaches to evaluate the severity of regurgitation when feasible.

(3) Adjunctive parameters should be used when there is discordance between the quantified degree of regurgitation and the clinical context.

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Special Aspects of Echocardiographic Assessment of the Severity of AR:
It is not allowed to estimate severity according to the size of the jet area.

Quantification of the AR-severity according to the jet area is always wrong.

Estimation of the severity of valvular regurgitation: recommendations

(1) The colour flow area of the regurgitant jet is not recommended to quantify the severity of valvular regurgitation.

according to Lancellotti et al., Eur J Echocardiography 2010;11: 223-244
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Semiquantitative grading of AR:

Methods if indirect grading of AR (semiquantification):
1. Pressure Half Time-Method – PHT
2. Vena contracta or proximal jet-width (or the ratio of $D_{\text{jet-width}}/D_{\text{LVOT}}$)
3. Regurgitant orifice area
4. (or the ratio of area$_{\text{prox. jet}}$/area$_{\text{LVOT}}$)
5. Reversal flow in the subclavian artery or the descending aorta

Key point
When feasible, the measurement of the vena contracta width is recommended to quantify AR. Intermediate vena contracta values (3–6 mm) need confirmation by a more quantitative method, when feasible. The vena contracta can often be obtained in eccentric jet. In the case of multiple jets, the respective values of vena contracta width are not additive. The assessment of the vena contracta by 3D echo is still reserved for research purposes.
Jet density of the cw-AR-signal
The more intensive the signal, the higher the AR-severity

This approach is dependent on the continuance existence of the AR-jet in place of the ultrasound beam during the complete diastole.

Due to its methodological limitations this approach is not present in the current guidelines anymore.
The intensity of the AR jet is extremely dependent on methodological factors (like PHT method). Thus, this approach of grading the AR severity is not always feasible and reliable.

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Semiquantitative Approach for AR-Grading: The „Pressure Half Time“-Method

The alignment of the regurgitant jet has to be guaranteed during the complete diastole.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

\[\Delta P = 4 \left(V_2^2 \right) \]

\[3.54 \text{ m/sec} \]

\[5 \text{ m/sec} \]

DT \times 0.29 = \text{PHT} [\text{msec}]

DT – deceleration time

PHT – „Pressure Half Time“

Example: 1100 \times 0.29 = 320 \text{ msec}

According to PHT moderate AR, but due to the shape of the signal it is a severe AR, because DT is less than diastole.

If DT < diastole, it can be assumed that enddiastolic aortic pressure is equal to enddiastolic atrial pressure.

Mild AR

- PHT > 500 msec

Moderate AR

- PHT 200 – 500 msec

Severe AR

- PHT < 200 msec
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

The documentation of the correct alignment of the regurgitant signal can be checked by color-coded M-Mode.

If the turbulences of the aortic regurgitation are visible during the complete diastole, the alignment of the regurgitation is correct.

In addition a severe aortic regurgitation is likely.

Figure 7 (A) Colour Doppler showing a severe aortic regurgitation; (B) colour-coded M-mode depicting the time dependency of flow signal during the heart cycle.

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Semiquantitative Approach for AR-Grading: Diameter-Ratio of Proximal AR-Jet-Width in Relation to the LVOT-Width

Mild AR - Ratio < 30%
Moderate AR - Ratio = 30-50%
Severe AR - Ratio > 50%

Obvious errors induced by the arrangement of the commissures

Diameter LVOT = 33mm
Diameter prox. AR-Jet-Width = 27 mm
\[\frac{D_{AR-Jet}}{D_{LVOT}} = 82\% \]
Semiquantitative Approach for AR-Grading: Area-Ratio of Proximal AR-Jet-Area in Relation to the LVOT-Area

Mild AR - Ratio < 30%
Moderate AR - Ratio = 30-50%
Severe AR - Ratio > 50%

This approach is better than the diameter-ratio due to a minor interobserver variability.

Area of the proximal AR-jet displayed by a short axis view = EROA (effective regurgitation orifice area by planimetry)
Cause of the valvular lesion in this case:
⇒ prolapse and anulus dilatation
Semiquantitative Approach for AR-Grading: Area-Ratio of Proximal AR-Jet-Area in Relation to the LVOT-Area

Area of the LVOT = 280 mm²

Ratio Area_{AR-Jet/Area_{LVOT}} = 50%

Area of the prox. AR-Jet = 140 mm²
Semiquantitative Approach for AR-Grading:
Simplified scheme for regurgitant orifice areas in short axis views

Ratio \(\frac{\text{Area}_{\text{AR-Jet}}}{\text{Area}_{\text{LVOT}}} \)
If Ratio > 50% - severe AR

according to Fehske: Praxis der Doppler-Echokardiographie
Quantitative/ Semiquantitative Approach for AR-Grading: Diastolic flow reversal in the descending aorta

Holodiastolic flow reversal is at least a moderate AR. If end diastolic reverse velocity is > 0.2 (0.3) m/s, a severe AR can be assumed. – But

Turbulences in the aortic arch and the descending aorta cause often misinterpretation of the Doppler signals. Flow reversal is extremely age-dependent due to the „Windkessel“- function of the aorta.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Quantitative/ Semiquantitativ Approach for AR-Grading:
Diastolic flow reversal in the descending aorta

Young patients are able to compensate diastolic flow reversal completely.

A better standardization of diastolic flow reversal can be achieved by documenting the flow profile of the left subclavian artery.

according to Omran et al., The Journal of Heart Valve Disease 1995;4:166-170
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Key point
The measurement of the diastolic flow reversal in the descending aorta is recommended, when assessable. It should be considered as the strongest additional parameter for evaluating the severity of AR.

Numerical criteria for a severe aortic regurgitation:
1. $\text{VTI}_{\text{dia}}/\text{VTI}_{\text{sys}} > 50\%$
2. $V_{\text{dia}}/V_{\text{sys}} > 0.3$
3. $\text{VTI}_{\text{dia}} > 25\ $cm

according to Omran et al., The Journal of Heart Valve Disease 1995;4:166-170

Holodiastolic flow reversal in the left subclavian artery – at least moderate AR

<table>
<thead>
<tr>
<th>Patients</th>
<th>D (cm/sec)</th>
<th>dVTI</th>
<th>D/S</th>
<th>RF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>-27 ± 10</td>
<td>-15 ± 14</td>
<td>0.1 ± 0.09</td>
<td>14 ± 12</td>
</tr>
<tr>
<td>AR 1+/2+</td>
<td>-25 ± 7</td>
<td>-18 ± 13</td>
<td>0.1 ± 0.06</td>
<td>18 ± 15</td>
</tr>
<tr>
<td>AR 3+/4+</td>
<td>-44 ± 11</td>
<td>-90 ± 30</td>
<td>0.52 ± 0.1</td>
<td>75 ± 19</td>
</tr>
</tbody>
</table>

Insignificant (1+/2+) versus significant forms of aortic regurgitation (3+/4+ AR) † p<0.05
Every grading of aortic regurgitation by qualitative or semiquantitative parameters is not sufficient in patients, in whom surgical interventions are discussed. A quantitative approach should be performed.

For a quantitative approach in echocardiography all findings have to be consistent.

Table 2 Grading the severity of AR

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic valve morphology</td>
<td>Normal/Abnormal</td>
<td>Normal/Abnormal</td>
<td>Abnormal/flail/large coaptation defect</td>
</tr>
<tr>
<td>Colour flow AR jet width(^a)</td>
<td>Small in central jets</td>
<td>Intermediate</td>
<td>Large in central jet, variable in eccentric jets</td>
</tr>
<tr>
<td>CW signal of AR jet</td>
<td>Incomplete/faint</td>
<td>Dense</td>
<td>Dense</td>
</tr>
<tr>
<td>Diastolic flow reversal in descending aorta</td>
<td>Brief, protodiastolic flow reversal</td>
<td>Intermediate</td>
<td>Holodiastolic flow reversal (end-diastolic velocity > 20 cm/s)</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC width (mm)</td>
<td>< 3</td>
<td>Intermediate</td>
<td>> 6</td>
</tr>
<tr>
<td>Pressure half-time (ms)(^b)</td>
<td>> 500</td>
<td>Intermediate</td>
<td>< 200</td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EROA (mm(^2))</td>
<td>< 10</td>
<td>10–19; 20–29(^c)</td>
<td>≥ 30</td>
</tr>
<tr>
<td>R Vol (mL)</td>
<td>< 30</td>
<td>30–44; 45–59(^c)</td>
<td>≥ 60</td>
</tr>
</tbody>
</table>

\(^a\)Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Despite I am co-author of this recommendation, I do not agree with this opinion.

Key point
The PISA method is acceptably reproducible in mitral regurgitation, TR, and AR. The following steps are recommended: (1) optimize the colour flow imaging (Variance OFF) with a small angle from an apical or parasternal window, (2) expand the image using zoom or regional extension selection, (3) shift the colour flow zero baseline towards the regurgitant jet direction to obtain a hemispheric PISA, (4) use the cine mode to select the most satisfactory hemispheric PISA, (5) display the colour Doppler off when necessary to visualize the regurgitant orifice, (6) measure the PISA radius using the first aliasing, and (7) measure the regurgitant velocity.

The PISA method has several advantages. Instrumental and haemodynamic factors do not seem to substantially influence flow quantification by this approach. The aetiology of regurgitation or the presence of concomitant valvular disease does not affect the regurgitant orifice area calculation. Although less accurate, this method can still be used in eccentric jet without significant distortion in the isovelocity contours.¹⁵

According to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244

Despite its methodological limitations, the PISA method is a quantitative approach of AR-grading.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

But:

1. The Vena contracta-method is only feasible, if the jet origin is dot-shaped and spherical.
2. The proximal convergence zones are only well depicted, if Doppler angulation is correct.
3. If not, EROA and regurgitent volume will be overestimated.

Figure 10: Quantitative assessment of aortic regurgitation (AR) severity using the proximal isovelocity surface area (PISA) method. Stepwise analysis of AR: (A) parasternal long-axis view (PT-LAX); (B) Colour flow display; (C) zoom of the selected zone; (D) downward shift of zero baseline to obtain a hemispheric PISA; (E) measure of the PISA radius using the first alasing; (F) continuous-wave Doppler of AR jet allowing calculation the effective regurgitant orifice area (EROA) and regurgitant volume (R Vol). TVI, time-velocity integral.

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244
Quantitative Approach for AR-Grading: The PISA method – determination of EROA and RV

PISA method is only reliable for AR grading, if proximal convergence zones are well visualized by correct Doppler angulation (less than 30° deviation of the alignment).
Aortic Regurgitation: quantitative approach to determine regurgitant volume and regurgitant fraction

\[
RF_{AV} = \frac{100 \times (SV_{LVOT} - SV_{MV})}{SV_{LVOT}}
\]

\[
RF_{AV} = \frac{100 \times (SV_{LVOT} - SV_{RVOT})}{SV_{LVOT}}
\]

- \(RF_{AV} \) = regurgitant fraction
- \(SV_{LVOT} \) = stroke volume determined by \(D_{LVOT}^2 \times VTI_{LVOT} \)
- \(SV_{MV} \) = stroke volume determined by \(D_{MV}^2 \times VTI_{MV} \)
- \(SV_{RVOT} \) = stroke volume determined by \(D_{RVOT}^2 \times VTI_{RVOT} \)
- \((SV_{LVOT} - SV_{MV}) \) = regurgitant volume of aortic regurgitation
- \((SV_{LVOT} - SV_{RVOT}) \) = regurgitant volume of aortic regurgitation
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

“A lot of methodological issues, which can be discussed in this figure of the recommendation paper.”
Thus – prefer to determine the effective stroke volume by Doppler echocardiography using the RVOT- or PV- pw-signal.

according to Lancelotti et al., Eur J Echocardiography 2010;11: 223-244

Figure 3 The quantitative assessment of aortic/pulmonary regurgitation severity by the Doppler volumetric method requires the measurement of the left ventricular outflow tract diameter (LVOT), the mitral annulus diameter and of two pulse wave velocity profiles (outflow tract and mitral inflow velocities). TVI, time-velocity integral.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Quantitative Approach for AR-Grading:
Total and effective stroke volume determination

Compare total stroke volume by LVOT measurement with biplane planimetry of the LV.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Quantitative approach to estimate the regurgitant orifice area

\[\text{AV}_{RV} = (\text{SV}_{LVOT} - \text{SV}_{RVOT}) = \text{AR-regurgitant volume} \]

\[\text{RV} = \text{regurgitant volume} \]

\[\frac{\text{AV}_{RV}}{\text{VTI}_{AR}} = \text{EROA}_{AV} = \text{effective regurgitant orifice area} \]

\[\text{AR} = \text{aortic regurgitation} \]

\[> 30 \text{mm}^2 = \text{severe AR} \]
Grading of the severity of aortic regurgitation

- Never use the color flow jet area for AR grading.
- All semiquantitative methods have to be checked individually, because they have limitations in special AR scenarios.
- The PHT-method is often misleading and is the „main producer“ of wrong severe aortic regurgitations due to methodological errors.
- The flow reversal in the subclavian artery is one of the best semiquantitative approaches, e.g. for paravalvular leakages in aortic prosthesis.
- Measurements of the LV dimensions, LV volumes and LV ejection fraction are always mandatory inpatients with AR.
- The functional classification of aortic regurgitation should be performed.
- In patients with moderate and severe AR always a quantitative approach of AR grading by determination of total and effective stroke volumes is mandatory.
- If echocardiography is not concise, use cardiac MR.
Assessment of Aortic Regurgitation by Echocardiography and its Mechanisms

Thank You for Your Attention